Xiao Zhenxue, Wu Siyuan, Ren Xiaozhe, Fei Minfei, Hao Shuai, Gao Xueping, Li Guoran
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB30FS, UK.
Adv Sci (Weinh). 2025 Mar;12(12):e2413419. doi: 10.1002/advs.202413419. Epub 2025 Feb 7.
The fast charging-discharging performance of power batteries has very practical significance. In terms of electrochemistry, this requires fast and stable kinetics for electrochemical reaction processes. Despite the great complexity of kinetics, it is clear that lithium-ion desolvation and a subsequent step of crossing through cathode-electrolyte interphase (CEI) are crucial to high-rate performance, in which the two key steps depend heavily on the working electrolyte formula. In this work, a customized electrolyte is developed to coordinate ion desolvation and interphase formation by introducing vinylene carbonate (VC), triphenylboroxin (TPBX), and fluoroethylene carbonate (FEC) but excluding ethylene carbonate (EC). Serving Ni-rich cathodes, the customized electrolyte generates a double-layered CEI, LiF-dominated inorganics inner layer, and ROCOOLi-dominated organics outer layer, which is not only stable and very efficient for lithium ion transport. Meanwhile, a -dominated solvation structure is induced and effectively decreases the desolvation energy to 29.72 kJ mol, supporting fast lithium ion transport in the cathode interfacial processes. Consequently, the Ni-rich lithium-ion battery achieves a stable long cycle at a superior high rate of 10 C.
动力锂电池的快速充放电性能具有非常重要的实际意义。从电化学角度来看,这要求电化学反应过程具备快速且稳定的动力学。尽管动力学极为复杂,但很明显锂离子去溶剂化以及随后穿过阴极 - 电解质界面(CEI)的步骤对于高倍率性能至关重要,其中这两个关键步骤在很大程度上取决于工作电解质配方。在这项工作中,通过引入碳酸亚乙烯酯(VC)、三苯基硼氧六环(TPBX)和氟代碳酸乙烯酯(FEC)但不包括碳酸乙烯酯(EC),开发了一种定制电解质,以协调离子去溶剂化和界面形成。用于富镍阴极时,该定制电解质会生成双层CEI,即LiF主导的无机内层和ROCOOLi主导的有机外层,这不仅稳定而且对锂离子传输非常高效。同时,诱导出一种以 为主的溶剂化结构,并有效地将去溶剂化能降低至29.72 kJ/mol,支持锂离子在阴极界面过程中的快速传输。因此,富镍锂离子电池在10 C的优异高倍率下实现了稳定的长循环。