Suppr超能文献

用二氧戊环衍生物替代传统电池电解质添加剂用于高能量密度锂离子电池。

Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries.

作者信息

Park Sewon, Jeong Seo Yeong, Lee Tae Kyung, Park Min Woo, Lim Hyeong Yong, Sung Jaekyung, Cho Jaephil, Kwak Sang Kyu, Hong Sung You, Choi Nam-Soon

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.

Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.

出版信息

Nat Commun. 2021 Feb 5;12(1):838. doi: 10.1038/s41467-021-21106-6.

Abstract

Solid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNiCoMnO cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1 C and fast charging capability (1.9% capacity fading after 100 cycles at 3 C).

摘要

使用电解质添加剂生成的固体电解质界面对于阳极与电解质之间的相互作用以及延长锂离子电池的使用寿命至关重要。传统的固体电解质界面添加剂,如碳酸亚乙烯酯和氟代碳酸乙烯酯,在高能量密度锂离子电池(LIB)中同时实现长寿命和快速充电能力的潜力有限。在此,我们报告了一种新一代合成添加剂方法,该方法可通过氟化和硅烷化电解质添加剂形成高度稳定的电极-电解质界面结构;它能承受嵌入硅的阳极锂化诱导的体积膨胀,并提供离子通道以促进锂离子传输,同时保护富镍的LiNiCoMnO阴极。通过逆合成设计的形成固体电解质界面的添加剂,5-甲基-4-((三氟甲氧基)甲基)-1,3-二氧戊环-2-酮和5-甲基-4-((三甲基硅氧基)甲基)-1,3-二氧戊环-2-酮,通过与碳酸亚乙烯酯的乙烯基进行聚合扩展,为碳酸亚乙烯酯衍生的固体电解质界面提供空间灵活性。由合成的碳酸亚乙烯酯型添加剂形成的界面结构使高能量密度LIB在1 C下400次循环后容量保持率达到81.5%,并具有快速充电能力(在3 C下100次循环后容量衰减1.9%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d908/7864909/9f69f7f94abf/41467_2021_21106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验