Suppr超能文献

饮食治疗的妊娠期糖尿病女性对食物血糖反应的个性化预测:肠道微生物群的作用

Personalized prediction of glycemic responses to food in women with diet-treated gestational diabetes: the role of the gut microbiota.

作者信息

Popova Polina V, Isakov Artem O, Rusanova Anastasiia N, Sitkin Stanislav I, Anopova Anna D, Vasukova Elena A, Tkachuk Alexandra S, Nemikina Irina S, Stepanova Elizaveta A, Eriskovskaya Angelina I, Stepanova Ekaterina A, Pustozerov Evgenii A, Kokina Maria A, Vasilieva Elena Y, Vasilyeva Lyudmila B, Zgairy Soha, Rubin Elad, Even Carmel, Turjeman Sondra, Pervunina Tatiana M, Grineva Elena N, Koren Omry, Shlyakhto Evgeny V

机构信息

World-Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia.

Institute of Endocrinology, Almazov National Medical Research Centre, Saint Petersburg, Russia.

出版信息

NPJ Biofilms Microbiomes. 2025 Feb 7;11(1):25. doi: 10.1038/s41522-025-00650-9.

Abstract

We developed a prediction model for postprandial glycemic response (PPGR) in pregnant women, including those with diet-treated gestational diabetes mellitus (GDM) and healthy women, and explored the role of gut microbiota in improving prediction accuracy. The study involved 105 pregnant women (77 with GDM, 28 healthy), who underwent continuous glucose monitoring (CGM) for 7 days, provided food diaries, and gave stool samples for microbiome analysis. Machine learning models were created using CGM data, meal content, lifestyle factors, biochemical parameters, and microbiota data (16S rRNA gene sequence analysis). Adding microbiome data increased the explained variance in peak glycemic levels (GLUmax) from 34 to 42% and in incremental area under the glycemic curve (iAUC120) from 50 to 52%. The final model showed better correlation with measured PPGRs than one based only on carbohydrate count (r = 0.72 vs. r = 0.51 for iAUC120). Although microbiome features were important, their contribution to model performance was modest.

摘要

我们开发了一种针对孕妇餐后血糖反应(PPGR)的预测模型,其中包括接受饮食治疗的妊娠期糖尿病(GDM)孕妇和健康孕妇,并探讨了肠道微生物群在提高预测准确性方面的作用。该研究纳入了105名孕妇(77名GDM孕妇,28名健康孕妇),她们接受了7天的持续葡萄糖监测(CGM),提供了饮食日记,并提供了粪便样本用于微生物组分析。利用CGM数据、饮食内容、生活方式因素、生化参数和微生物群数据(16S rRNA基因序列分析)创建了机器学习模型。添加微生物组数据后,血糖峰值水平(GLUmax)的解释方差从34%增加到42%,血糖曲线下增量面积(iAUC120)的解释方差从50%增加到52%。最终模型与实测PPGR的相关性优于仅基于碳水化合物计数的模型(iAUC120的r值分别为0.72和0.51)。尽管微生物组特征很重要,但其对模型性能的贡献不大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c77c/11806021/bcd5b080b37c/41522_2025_650_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验