Suppr超能文献

氧化铁纳米颗粒通过调节光合能力、膜完整性、碳水化合物代谢和细胞抗氧化防御来增强甜椒对碱性胁迫的耐受性。

Iron oxide nanoparticles enhance alkaline stress resilience in bell pepper by modulating photosynthetic capacity, membrane integrity, carbohydrate metabolism, and cellular antioxidant defense.

作者信息

Shahzad Raheel, Koerniati Sri, Harlina Putri Widyanti, Hastilestari Bernadetta Rina, Djalovic Ivica, Prasad P V Vara

机构信息

Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia.

Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung, 45363, Indonesia.

出版信息

BMC Plant Biol. 2025 Feb 10;25(1):170. doi: 10.1186/s12870-025-06180-y.

Abstract

Bell pepper (Capsicum annuum L.) is a commercially important and nutritionally rich vegetable crop in the Solanaceae family. Alkaline stress (AS) can disrupt growth, metabolism, and, particularly, nutritional quality. This study aims to evaluate the role of iron oxide nanoparticles (FeNP) in mitigating AS and enhancing plant growth and metabolic functions by conducting experiments under controlled greenhouse conditions with four main treatments: AS (irrigating plants with alkaline salts mixture solution); FeNP (foliar application of FeO nanoparticles at 100 mg L¹); AS + FeNP (integrated treatment of AS and FeNP); and CK (control). The results clearly demonstrated that the AS treatment negatively affects plant biomass, photosynthetic attributes, membrane integrity, carbohydrate metabolism, and the balance of the antioxidant system. Additionally, key phenolic and flavonoid compounds decreased under the AS, indicating a detrimental effect on the plant's secondary metabolites. In contrast, the application of FeNP under the AS not only improved growth and photosynthetic attributes but also enhanced membrane integrity and restored antioxidant balance. This restoration was driven by the accumulation of sugars (glucose, fructose, sucrose) and starch, along with key carbohydrate metabolism enzymes-sucrose phosphate synthase (SPS), sucrose synthase (SuSy), neutral invertase (NI), and vacuolar invertase (VI)-and their associated gene expression. The correlation analysis further revealed a tight regulation of carbohydrate metabolism at both enzymatic and transcript levels in all tissue types, except for SPS in the roots. Furthermore, the AS + FeNP treatment resulted in increased levels of key phenolics (dihydrocapsaicin, capsaicin, p-coumaric acid, sinapic acid, p-OH benzoic acid, p-OH benzaldehyde, and ferulic acid) and flavonoid compounds (dihydroquercetin, naringenin, kaempferol, dihydrokaempferol, and quercetin) compared to the AS treatment, thus suggesting that these secondary metabolites likely contribute to the stabilization of cellular structures and membranes, ultimately supporting improved physiological functions and resilience under stress. In conclusion, the application of FeNP demonstrate potential in enhancing the resilience of bell pepper plants against the AS by improving growth, carbohydrate metabolism, and the levels of secondary metabolites.

摘要

甜椒(Capsicum annuum L.)是茄科一种具有重要商业价值且营养丰富的蔬菜作物。碱性胁迫(AS)会扰乱植物的生长、代谢,尤其是营养品质。本研究旨在通过在可控温室条件下进行实验来评估氧化铁纳米颗粒(FeNP)在缓解碱性胁迫以及促进植物生长和代谢功能方面的作用,实验设置了四个主要处理:碱性胁迫(用碱性盐混合溶液浇灌植物);FeNP(叶面喷施100 mg L⁻¹ 的FeO纳米颗粒);碱性胁迫 + FeNP(碱性胁迫与FeNP的综合处理);以及CK(对照)。结果清楚地表明,碱性胁迫处理对植物生物量、光合特性、膜完整性、碳水化合物代谢以及抗氧化系统平衡产生负面影响。此外,在碱性胁迫下关键酚类和黄酮类化合物减少,表明对植物次生代谢产物有不利影响。相比之下,在碱性胁迫下施用FeNP不仅改善了生长和光合特性,还增强了膜完整性并恢复了抗氧化平衡。这种恢复是由糖类(葡萄糖、果糖、蔗糖)和淀粉的积累,以及关键碳水化合物代谢酶——蔗糖磷酸合酶(SPS)、蔗糖合酶(SuSy)、中性转化酶(NI)和液泡转化酶(VI)——及其相关基因表达驱动的。相关性分析进一步揭示,除了根中的SPS外,所有组织类型在酶和转录水平上对碳水化合物代谢都有严格调控。此外,与碱性胁迫处理相比,碱性胁迫 + FeNP处理导致关键酚类(二氢辣椒素、辣椒素、对香豆酸、芥子酸、对羟基苯甲酸、对羟基苯甲醛和阿魏酸)和黄酮类化合物(二氢槲皮素、柚皮素、山奈酚、二氢山奈酚和槲皮素)水平升高,因此表明这些次生代谢产物可能有助于稳定细胞结构和膜,最终支持在胁迫下改善生理功能和恢复力。总之,施用FeNP通过改善生长、碳水化合物代谢和次生代谢产物水平,在增强甜椒植株对碱性胁迫的恢复力方面显示出潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/000e/11808985/ec82d899e189/12870_2025_6180_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验