Suppr超能文献

利用机器学习分析描述大动脉转位患者动脉调转术后组织多普勒和斑点追踪超声心动图的模式。

Using machine learning analysis to describe patterns in tissue Doppler and speckle tracking echocardiography in patients with transposition of the great arteries after arterial switch operation.

作者信息

Terol Espinosa de Los Monteros Covadonga, van der Palen Roel L F, Van den Eynde Jef, Rammeloo Lukas, Hazekamp Mark G, Blom Nico A, Kuipers Irene M, Ten Harkel Arend D J

机构信息

Department of Pediatrics, Division of Pediatric Cardiology, Leiden University Medical Center, Leiden, the Netherlands.

Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.

出版信息

Int J Cardiol Congenit Heart Dis. 2024 Dec 20;19:100560. doi: 10.1016/j.ijcchd.2024.100560. eCollection 2025 Mar.

Abstract

BACKGROUND

Advanced echocardiographic techniques such as Tissue Doppler imaging (TDI) and speckle tracking echocardiography (STE) can detect more subtle changes in ventricular performance. We aimed to study the ventricular performance in patients with transposition of the great arteries (TGA) at mid-term follow-up after the arterial switch operation (ASO) with advanced echocardiographic techniques. In addition, we sought to discover new clinical phenotypes using unsupervised machine learning.

METHODS

Conventional, TDI and STE echocardiographic parameters were prospectively obtained from 124 TGA patients (66.1 % male, age 10.8 ± 5.1 years, 24.2 % with ventricular septal defect) in this observational study. The data was analyzed with conventional statistics and new machine learning techniques.

RESULTS

TGA patients had reduced biventricular systolic (septal s' Z-score -2.28 ± 1.26; RV s' Z-score -2.16 ± 0.71; mean left ventricular longitudinal strain Z-score of the LV -2.49 ± 1.68) and RV diastolic performance (RV E/e' Z-score 2.35 ± 1.70) mid-term after ASO. Unsupervised clustering within the TGA population revealed 3 clusters. Interestingly, cluster 3 defined a group of patients with older age at ASO, the most reduced ventricular performance as well as the highest rates of reoperations and interventions.

CONCLUSIONS

Assessment of ventricular performance with TDI and STE 10 years after ASO showed that TGA patients have decreased biventricular systolic and diastolic function, especially at the septal regions. Novel analytical methods such as unsupervised clustering may help identify new clinical phenotypes from multiple variables and may contribute to improved risk stratification.

摘要

背景

组织多普勒成像(TDI)和斑点追踪超声心动图(STE)等先进的超声心动图技术能够检测到心室功能更细微的变化。我们旨在运用先进的超声心动图技术,研究大动脉转位(TGA)患者在动脉调转术(ASO)中期随访时的心室功能。此外,我们试图通过无监督机器学习发现新的临床表型。

方法

在这项观察性研究中,前瞻性地获取了124例TGA患者(男性占66.1%,年龄10.8±5.1岁,24.2%合并室间隔缺损)的常规、TDI和STE超声心动图参数。数据采用常规统计学方法和新的机器学习技术进行分析。

结果

ASO中期时,TGA患者双心室收缩功能降低(室间隔s' Z值 -2.28±1.26;右心室s' Z值 -2.16±0.71;左心室平均左心室纵向应变Z值 -2.49±1.68),右心室舒张功能也降低(右心室E/e' Z值 2.35±1.70)。TGA人群中的无监督聚类分析显示出3个聚类。有趣的是,聚类3定义了一组在ASO时年龄较大、心室功能降低最明显以及再次手术和干预率最高的患者。

结论

ASO术后10年采用TDI和STE评估心室功能显示,TGA患者双心室收缩和舒张功能降低,尤其是在室间隔区域。无监督聚类等新的分析方法可能有助于从多个变量中识别新的临床表型,并可能有助于改善风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6031/11803126/d5f5f896c2c1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验