Cerrone Federico, O'Connor Kevin E
School of Biotechnology, Dublin City University, Glasnevin Campus Dublin, Dublin, Ireland.
BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science (Science East) University College Dublin, Belfield Campus Dublin, Dublin, Ireland.
Appl Microbiol Biotechnol. 2025 Feb 10;109(1):41. doi: 10.1007/s00253-025-13422-4.
Filamentous fungi or mycelia are a valuable bioresource to produce several biomolecules and enzymes, especially because of their biodegradation potential and for their key role of enablers of a circular bioeconomy. Filamentous fungi can be grown in submerged cultivation to maximise the volumetric productivity of the bioprocess, instead of using the more established and time-consuming solid-state cultivation. Multicellular mycelia are sensitive to shear stresses induced by mechanical agitation, and this aspect greatly affects their morphology in submerged cultivation (pelletisation) and the connected volumetric productivity. An efficient compromise is the growth of filamentous fungi in airlift bioreactors (ALR) where the volumetric oxygen transfer (Ka) is optimal, but the shear stress is reduced. In this review, we critically analysed the advantages and disadvantages of ALR-based cultivation of filamentous fungi, comparing these bioreactors also with stirred tank reactors and bubble column reactors; we focused on scientific literature that highlights findings for the cultivation of filamentous fungi for both the production of enzymes and the production of myco-biomass in ALR; we included studies for the control of the pelletisation of the fungal biomass in batch and semi-continuous cultivation, highlighting the interlinked hydrodynamics; finally, we included studies regarding the modifications of ALR in order to enhance filamentous fungi production. KEY POINTS: • ALR are efficient for batch and prolonged continuous cultivation of filamentous fungi. • ALR show both optimal gas hold-up and Ka with an airflow that has high superficial velocity and critical bubble diameter (1-6 mm). • Suspended mycelia aggregates (pellet) maintain a fluidised motion in ALR if their size/density can be controlled.
丝状真菌或菌丝体是生产多种生物分子和酶的宝贵生物资源,特别是由于它们的生物降解潜力以及在循环生物经济中作为推动者的关键作用。丝状真菌可以在深层培养中生长,以最大化生物过程的体积生产力,而不是使用更成熟且耗时的固态培养。多细胞菌丝体对机械搅拌引起的剪切应力敏感,这一方面极大地影响了它们在深层培养(造粒)中的形态以及相关的体积生产力。一个有效的折衷方案是在气升式生物反应器(ALR)中培养丝状真菌,其中体积氧传递(Ka)是最佳的,但剪切应力降低。在这篇综述中,我们批判性地分析了基于ALR培养丝状真菌的优缺点,还将这些生物反应器与搅拌罐反应器和鼓泡塔反应器进行了比较;我们关注了突出在ALR中培养丝状真菌用于酶生产和真菌生物质生产的研究结果的科学文献;我们纳入了关于在分批和半连续培养中控制真菌生物质造粒过程的研究,突出了相互关联的流体动力学;最后,我们纳入了关于对ALR进行改进以提高丝状真菌产量的研究。要点:• ALR对于丝状真菌的分批培养和长时间连续培养是有效的。• ALR在具有高表观速度和临界气泡直径(1 - 6毫米)的气流下,显示出最佳的气体滞留率和Ka。• 如果悬浮菌丝体聚集体(颗粒)的大小/密度能够得到控制,它们在ALR中会保持流化运动。