Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico; Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico.
División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, CDMX, Mexico.
J Theor Biol. 2024 Aug 7;590:111853. doi: 10.1016/j.jtbi.2024.111853. Epub 2024 May 18.
Fungal pellets are hierarchical systems that can be found in an ample variety of applications. Modeling transport phenomena in this type of systems is a challenging but necessary task to provide knowledge-based processes that improve the outcome of their biotechnological applications. In this work, an upscaled model for total mass and momentum transport in fungal pellets is implemented and analyzed, using elements of the volume averaging and adjoint homogenization methods departing from the governing equations at the microscale in the intracellular and extracellular phases. The biomass is assumed to be composed of a non-Newtonian fluid and the organelles impervious to momentum transport are modeled as a rigid solid phase. The upscaled equations contain effective-medium coefficients, which are predicted from the solution of adjoint closure problems in a three-dimensional periodic domains representative of the microstructure. The construction of these domains was performed for Laccaria trichodermophora based on observations of actual biological structures. The upscaled model was validated with direct numerical simulations in homogeneous portions of the pellets core. It is shown that no significant differences are observed when the dolipores are open or closed to fluid flow. By comparing the predictions of the average velocity in the extracellular phase resulting from the upscaled model with those from the classical Darcy equation (i.e., assuming that the biomass is a solid phase) the contribution of the intracellular fluid phase was evidenced. This work sets the foundations for further studies dedicated to transport phenomena in this type of systems.
真菌球是可以在大量应用中发现的分层系统。在这类系统中对传输现象进行建模是一项具有挑战性但又必要的任务,因为它可以提供基于知识的过程,从而改善其生物技术应用的结果。在这项工作中,使用体积平均和伴随均匀化方法的元素,从细胞内和细胞外相的微观尺度上的控制方程出发,实现并分析了真菌球中总质量和动量传输的规模化模型。假设生物量由非牛顿流体组成,并且对动量传输不渗透的细胞器被建模为刚性固相。规模化方程包含有效介质系数,这些系数是通过在代表微观结构的三维周期域中求解伴随闭合问题来预测的。这些域的构建是基于实际生物结构的观察结果为 Trichodermophora 进行的。通过在球核的均匀部分进行直接数值模拟验证了规模化模型。结果表明,当液泡孔对流体流动开放或关闭时,不会观察到明显的差异。通过将规模化模型得出的细胞外相平均速度预测值与经典达西方程(即假设生物量为固相)得出的预测值进行比较,证明了细胞内流体相的贡献。这项工作为进一步研究这类系统中的传输现象奠定了基础。