Suppr超能文献

基于机器学习模型的 CT 放射组学特征对肾上腺腺瘤进行亚型分类。

Using CT radiomic features based on machine learning models to subtype adrenal adenoma.

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, 110169, Shenyang, China.

Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, 110169, Shenyang, China.

出版信息

BMC Cancer. 2023 Jan 31;23(1):111. doi: 10.1186/s12885-023-10562-6.

Abstract

BACKGROUND

Functioning and non-functioning adrenocortical adenoma are two subtypes of benign adrenal adenoma, and their differential diagnosis is crucial. Current diagnostic procedures use an invasive method, adrenal venous sampling, for endocrinologic assessment.

METHODS

This study proposes establishing an accurate differential model for subtyping adrenal adenoma using computed tomography (CT) radiomic features and machine learning (ML) methods. Dataset 1 (289 patients with adrenal adenoma) was collected to develop the models, and Dataset 2 (54 patients) was utilized for external validation. Cuboids containing the lesion were cropped from the non-contrast, arterial, and venous phase CT images, and 1,967 features were extracted from each cuboid. Ten discriminative features were selected from each phase or the combined phases. Random forest, support vector machine, logistic regression (LR), Gradient Boosting Machine, and eXtreme Gradient Boosting were used to establish prediction models.

RESULTS

The highest accuracies were 72.7%, 72.7%, and 76.1% in the arterial, venous, and non-contrast phases, respectively, when using radiomic features alone with the ML classifier of LR. When features from the three CT phases were combined, the accuracy of LR reached 83.0%. After adding clinical information, the area under the receiver operating characteristic curve increased for all the machine learning methods except for LR. In Dataset 2, the accuracy of LR was the highest, reaching 77.8%.

CONCLUSION

The radiomic features of the lesion in three-phase CT images can potentially suggest the functioning or non-functioning nature of adrenal adenoma. The resulting radiomic models can be a non-invasive, low-cost, and rapid method of minimizing unnecessary testing in asymptomatic patients with incidentally discovered adrenal adenoma.

摘要

背景

功能性和非功能性肾上腺皮质腺瘤是良性肾上腺腺瘤的两种亚型,对其进行鉴别诊断至关重要。目前的诊断程序使用侵袭性方法,即肾上腺静脉采样,进行内分泌评估。

方法

本研究提出使用计算机断层扫描(CT)放射组学特征和机器学习(ML)方法为肾上腺腺瘤亚型建立准确的鉴别模型。数据集 1(289 例肾上腺腺瘤患者)用于开发模型,数据集 2(54 例患者)用于外部验证。从非对比、动脉和静脉期 CT 图像中裁剪包含病变的长方体,并从每个长方体中提取 1967 个特征。从每个阶段或组合阶段选择 10 个有区别的特征。使用随机森林、支持向量机、逻辑回归(LR)、梯度提升机和极端梯度提升机建立预测模型。

结果

仅使用 ML 分类器 LR 时,在动脉期、静脉期和非对比期,放射组学特征的准确率分别为 72.7%、72.7%和 76.1%。当将来自三个 CT 阶段的特征结合起来时,LR 的准确率达到了 83.0%。添加临床信息后,除 LR 外,所有机器学习方法的受试者工作特征曲线下面积均有所增加。在数据集 2 中,LR 的准确率最高,达到 77.8%。

结论

三期 CT 图像中病变的放射组学特征可能提示肾上腺腺瘤的功能性或非功能性。由此产生的放射组学模型可能是非侵入性的、低成本的、快速的方法,可以最大限度地减少对偶然发现的肾上腺腺瘤的无症状患者进行不必要的检查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f78/9890822/c33845757599/12885_2023_10562_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验