Suppr超能文献

语音电子健康记录:引入用于健康的多模态音频数据。

Voice EHR: introducing multimodal audio data for health.

作者信息

Anibal James, Huth Hannah, Li Ming, Hazen Lindsey, Daoud Veronica, Ebedes Dominique, Lam Yen Minh, Nguyen Hang, Hong Phuc Vo, Kleinman Michael, Ost Shelley, Jackson Christopher, Sprabery Laura, Elangovan Cheran, Krishnaiah Balaji, Akst Lee, Lina Ioan, Elyazar Iqbal, Ekawati Lenny, Jansen Stefan, Nduwayezu Richard, Garcia Charisse, Plum Jeffrey, Brenner Jacqueline, Song Miranda, Ricotta Emily, Clifton David, Thwaites C Louise, Bensoussan Yael, Wood Bradford

机构信息

Center for Interventional Oncology, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States.

Computational Health Informatics Lab, Oxford Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.

出版信息

Front Digit Health. 2025 Jan 28;6:1448351. doi: 10.3389/fdgth.2024.1448351. eCollection 2024.

Abstract

INTRODUCTION

Artificial intelligence (AI) models trained on audio data may have the potential to rapidly perform clinical tasks, enhancing medical decision-making and potentially improving outcomes through early detection. Existing technologies depend on limited datasets collected with expensive recording equipment in high-income countries, which challenges deployment in resource-constrained, high-volume settings where audio data may have a profound impact on health equity.

METHODS

This report introduces a novel protocol for audio data collection and a corresponding application that captures health information through guided questions.

RESULTS

To demonstrate the potential of Voice EHR as a biomarker of health, initial experiments on data quality and multiple case studies are presented in this report. Large language models (LLMs) were used to compare transcribed Voice EHR data with data (from the same patients) collected through conventional techniques like multiple choice questions. Information contained in the Voice EHR samples was consistently rated as equally or more relevant to a health evaluation.

DISCUSSION

The HEAR application facilitates the collection of an audio electronic health record ("Voice EHR") that may contain complex biomarkers of health from conventional voice/respiratory features, speech patterns, and spoken language with semantic meaning and longitudinal context-potentially compensating for the typical limitations of unimodal clinical datasets.

摘要

引言

基于音频数据训练的人工智能(AI)模型可能有潜力快速执行临床任务,通过早期检测增强医疗决策并有可能改善治疗结果。现有技术依赖于在高收入国家使用昂贵记录设备收集的有限数据集,这对在资源有限、量大的环境中进行部署构成挑战,而在这些环境中音频数据可能对健康公平性产生深远影响。

方法

本报告介绍了一种用于音频数据收集的新颖协议以及一个通过引导性问题捕获健康信息的相应应用程序。

结果

为证明语音电子健康记录作为健康生物标志物的潜力,本报告展示了关于数据质量的初步实验和多个案例研究。使用大语言模型(LLMs)将转录的语音电子健康记录数据与通过诸如多项选择题等传统技术收集的数据(来自相同患者)进行比较。语音电子健康记录样本中包含的信息在健康评估中始终被评为同等相关或更相关。

讨论

HEAR应用程序有助于收集音频电子健康记录(“语音电子健康记录”),其可能包含来自传统语音/呼吸特征、语音模式以及具有语义意义和纵向背景的口语的复杂健康生物标志物——有可能弥补单峰临床数据集的典型局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07dc/11812063/c6f44124bb44/fdgth-06-1448351-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验