Suppr超能文献

飞行时间磁共振血管造影术中人工智能辅助检测脑动脉瘤的自动化偏倚

Automation bias in AI-assisted detection of cerebral aneurysms on time-of-flight MR angiography.

作者信息

Kim Su Hwan, Schramm Severin, Riedel Evamaria Olga, Schmitzer Lena, Rosenkranz Enrike, Kertels Olivia, Bodden Jannis, Paprottka Karolin, Sepp Dominik, Renz Martin, Kirschke Jan, Baum Thomas, Maegerlein Christian, Boeckh-Behrens Tobias, Zimmer Claus, Wiestler Benedikt, Hedderich Dennis M

机构信息

Institute of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany.

出版信息

Radiol Med. 2025 Apr;130(4):555-566. doi: 10.1007/s11547-025-01964-6. Epub 2025 Feb 12.

Abstract

PURPOSE

To determine how automation bias (inclination of humans to overly trust-automated decision-making systems) can affect radiologists when interpreting AI-detected cerebral aneurysm findings in time-of-flight magnetic resonance angiography (TOF-MRA) studies.

MATERIAL AND METHODS

Nine radiologists with varying levels of experience evaluated twenty TOF-MRA examinations for the presence of cerebral aneurysms. Every case was evaluated with and without assistance by the AI software © mdbrain, with a washout period of at least four weeks in-between. Half of the cases included at least one false-positive AI finding. Aneurysm ratings, follow-up recommendations, and reading times were assessed using the Wilcoxon signed-rank test.

RESULTS

False-positive AI results led to significantly higher suspicion of aneurysm findings (p = 0.01). Inexperienced readers further recommended significantly more intense follow-up examinations when presented with false-positive AI findings (p = 0.005). Reading times were significantly shorter with AI assistance in inexperienced (164.1 vs 228.2 s; p < 0.001), moderately experienced (126.2 vs 156.5 s; p < 0.009), and very experienced (117.9 vs 153.5 s; p < 0.001) readers alike.

CONCLUSION

Our results demonstrate the susceptibility of radiology readers to automation bias in detecting cerebral aneurysms in TOF-MRA studies when encountering false-positive AI findings. While AI systems for cerebral aneurysm detection can provide benefits, challenges in human-AI interaction need to be mitigated to ensure safe and effective adoption.

摘要

目的

确定自动化偏差(人类过度信任自动化决策系统的倾向)在解读飞行时间磁共振血管造影(TOF-MRA)研究中人工智能检测到的脑动脉瘤结果时如何影响放射科医生。

材料与方法

九名经验水平各异的放射科医生对20例TOF-MRA检查进行脑动脉瘤检测。每例病例均在有无人工智能软件©mdbrain辅助的情况下进行评估,两次评估之间的洗脱期至少为四周。一半的病例包含至少一个假阳性人工智能检测结果。使用Wilcoxon符号秩检验评估动脉瘤分级、随访建议和阅读时间。

结果

人工智能的假阳性结果导致对动脉瘤结果的怀疑显著增加(p = 0.01)。经验不足的阅片者在面对人工智能假阳性结果时,进一步推荐的随访检查强度明显更高(p = 0.005)。在经验不足(164.1秒对228.2秒;p < 0.001)、经验中等(126.2秒对156.5秒;p < 0.009)和经验丰富(117.9秒对153.5秒;p < 0.001)的阅片者中,有人工智能辅助时的阅读时间均显著缩短。

结论

我们的结果表明,在TOF-MRA研究中检测脑动脉瘤时,当遇到人工智能假阳性结果时,放射科阅片者易受自动化偏差影响。虽然用于检测脑动脉瘤的人工智能系统有诸多益处,但需要缓解人机交互中的挑战,以确保安全有效地应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ce/12008054/fa0baf9a4551/11547_2025_1964_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验