Suppr超能文献

使用面部分析和机器学习技术的实时驾驶员困倦检测

Real-Time Driver Drowsiness Detection Using Facial Analysis and Machine Learning Techniques.

作者信息

Essahraui Siham, Lamaakal Ismail, El Hamly Ikhlas, Maleh Yassine, Ouahbi Ibrahim, El Makkaoui Khalid, Filali Bouami Mouncef, Pławiak Paweł, Alfarraj Osama, Abd El-Latif Ahmed A

机构信息

Multidisciplinary Faculty of Nador, Mohammed Premier University, Oujda 60000, Morocco.

Laboratory LaSTI, ENSAK, Sultan Moulay Slimane University, Khouribga 54000, Morocco.

出版信息

Sensors (Basel). 2025 Jan 29;25(3):812. doi: 10.3390/s25030812.

Abstract

Drowsy driving poses a significant challenge to road safety worldwide, contributing to thousands of accidents and fatalities annually. Despite advancements in driver drowsiness detection (DDD) systems, many existing methods face limitations such as intrusiveness and delayed reaction times. This research addresses these gaps by leveraging facial analysis and state-of-the-art machine learning techniques to develop a real-time, non-intrusive DDD system. A distinctive aspect of this research is its systematic assessment of various machine and deep learning algorithms across three pivotal public datasets, the NTHUDDD, YawDD, and UTA-RLDD, known for their widespread use in drowsiness detection studies. Our evaluation covered techniques including the K-Nearest Neighbors (KNNs), support vector machines (SVMs), convolutional neural networks (CNNs), and advanced computer vision (CV) models such as YOLOv5, YOLOv8, and Faster R-CNN. Notably, the KNNs classifier reported the highest accuracy of 98.89%, a precision of 99.27%, and an F1 score of 98.86% on the UTA-RLDD. Among the CV methods, YOLOv5 and YOLOv8 demonstrated exceptional performance, achieving 100% precision and recall with mAP@0.5 values of 99.5% on the UTA-RLDD. In contrast, Faster R-CNN showed an accuracy of 81.0% and a precision of 63.4% on the same dataset. These results demonstrate the potential of our system to significantly enhance road safety by providing proactive alerts in real time.

摘要

疲劳驾驶对全球道路安全构成了重大挑战,每年导致数千起事故和死亡。尽管驾驶员疲劳检测(DDD)系统取得了进展,但许多现有方法仍面临诸如侵入性和反应时间延迟等限制。本研究通过利用面部分析和先进的机器学习技术来开发实时、非侵入性的DDD系统,以解决这些差距。本研究的一个独特之处在于,它在三个关键的公共数据集NTHUDDD、YawDD和UTA-RLDD上对各种机器学习和深度学习算法进行了系统评估,这些数据集在疲劳检测研究中广泛使用。我们的评估涵盖了包括K近邻(KNN)、支持向量机(SVM)、卷积神经网络(CNN)以及先进的计算机视觉(CV)模型(如YOLOv5、YOLOv8和Faster R-CNN)等技术。值得注意的是,KNN分类器在UTA-RLDD上报告了最高准确率98.89%、精确率99.27%和F1分数98.86%。在CV方法中,YOLOv5和YOLOv8表现出色,在UTA-RLDD上实现了100%的精确率和召回率,mAP@0.5值为99.5%。相比之下,Faster R-CNN在同一数据集上的准确率为81.0%,精确率为63.4%。这些结果表明,我们的系统有潜力通过实时提供主动警报来显著提高道路安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c6a/11819803/730c74542695/sensors-25-00812-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验