Suppr超能文献

学术出版物中大数据与物联网的交叉点:一种主题建模方法。

Intersections of Big Data and IoT in Academic Publications: A Topic Modeling Approach.

作者信息

Căuniac Diana-Andreea, Cîrnaru Andreea-Alexandra, Oprea Simona-Vasilica, Bâra Adela

机构信息

Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, No. 6 Piaţa Romană, 010374 Bucharest, Romania.

Doctoral School of Economic Informatics, Bucharest University of Economic Studies, 010374 Bucharest, Romania.

出版信息

Sensors (Basel). 2025 Feb 2;25(3):906. doi: 10.3390/s25030906.

Abstract

As vast amounts of data are generated from various sources such as social media, sensors and online transactions, the analysis of Big Data offers organizations the ability to derive insights and make informed decisions. Simultaneously, IoT connects physical devices, enabling real-time data collection and exchange that transforms interactions within smart homes, cities and industries. The intersection of these fields is essential, leading to innovations such as predictive maintenance, real-time traffic management and personalized solutions. Utilizing a dataset of 8159 publications sourced from the Web of Science database, our research employs Natural Language Processing (NLP) techniques and selective human validation to analyze abstracts, titles, keywords and other useful information, uncovering key themes and trends in both Big Data and IoT research. Six topics are extracted using Latent Dirichlet Allocation. In Topic 1, words like "system" and "energy" are among the most frequent, signaling that Topic 1 revolves around , likely in the context of smart systems and energy-related applications. Topic 2 focuses on the , as indicated by terms such as "technologies", "industry" and "research". It deals with how IoT and related technologies are transforming various industries. Topic 3 emphasizes terms like learning and research, indicating a focus on . It is oriented toward research involving new methods and models in the IoT domain related to learning algorithms. Topic 4 highlights terms such as smart, suggesting a focus on . Topic 5 touches upon the role of digital chains and supply systems, suggesting an industrial focus on . Topic 6 focuses on technical aspects such as . It delves into the efficiency of IoT networks with terms like "accuracy", "power" and "performance" standing out.

摘要

随着社交媒体、传感器和在线交易等各种来源产生大量数据,大数据分析使组织能够获得见解并做出明智决策。同时,物联网连接物理设备,实现实时数据收集和交换,改变智能家居、城市和行业内的交互方式。这些领域的交叉至关重要,催生了预测性维护、实时交通管理和个性化解决方案等创新。我们的研究利用从科学网数据库获取的8159篇出版物数据集,采用自然语言处理(NLP)技术和选择性人工验证来分析摘要、标题、关键词和其他有用信息,揭示大数据和物联网研究中的关键主题和趋势。使用潜在狄利克雷分配提取了六个主题。在主题1中,“系统”和“能源”等词最为常见,表明主题1围绕 ,可能是在智能系统和能源相关应用的背景下。主题2关注 ,如“技术”、“行业”和“研究”等术语所示。它涉及物联网及相关技术如何改变各个行业。主题3强调学习和研究等术语,表明关注 。它面向涉及物联网领域与学习算法相关的新方法和模型的研究。主题4突出“智能”等术语,表明关注 。主题5涉及数字链和供应系统的作用,表明行业关注 。主题6关注诸如 等技术方面。它通过突出“准确性”、“功率”和“性能”等术语来深入研究物联网网络的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验