Suppr超能文献

跑步服装对使用OpenPifPaf在跑步机跑步过程中基于智能手机的二维关节运动学评估准确性的影响。

Impact of Running Clothes on Accuracy of Smartphone-Based 2D Joint Kinematic Assessment During Treadmill Running Using OpenPifPaf.

作者信息

Lambricht Nicolas, Englebert Alexandre, Nguyen Anh Phong, Fisette Paul, Pitance Laurent, Detrembleur Christine

机构信息

Institute of Experimental and Clinical Research, UCLouvain, 1200 Brussels, Belgium.

Institute of Information and Communication Technologies, Electronic and Applied Mathematics, UCLouvain, 1348 Louvain-la-Neuve, Belgium.

出版信息

Sensors (Basel). 2025 Feb 4;25(3):934. doi: 10.3390/s25030934.

Abstract

The assessment of running kinematics is essential for injury prevention and rehabilitation, including anterior cruciate ligament sprains. Recent advances in computer vision have enabled the development of tools for quantifying kinematics in research and clinical settings. This study evaluated the accuracy of an OpenPifPaf-based markerless method for assessing sagittal plane kinematics of the ankle, knee, and hip during treadmill running using smartphone video footage and examined the impact of clothing on the results. Thirty healthy participants ran at 2.5 and 3.6 m/s under two conditions: (1) wearing minimal clothing with markers to record kinematics by using both a smartphone and a marker-based system, and (2) wearing usual running clothes and recording kinematics by only using a smartphone. Joint angles, averaged over 20 cycles, were analysed using SPM1D and RMSE. The markerless method produced kinematic waveforms closely matching the marker-based results, with RMSEs of 5.6° (hip), 3.5° (ankle), and 2.9° (knee), despite some significant differences identified by SPM1D. Clothing had minimal impact, with RMSEs under 2.8° for all joints. These findings highlight the potential of the OpenPifPaf-based markerless method as an accessible, simple, and reliable tool for assessing running kinematics, even in natural attire, for research and clinical applications.

摘要

跑步运动学评估对于预防损伤和康复至关重要,包括前交叉韧带扭伤。计算机视觉的最新进展使得在研究和临床环境中开发用于量化运动学的工具成为可能。本研究评估了一种基于OpenPifPaf的无标记方法在使用智能手机视频片段评估跑步机跑步过程中踝关节、膝关节和髋关节矢状面运动学的准确性,并研究了服装对结果的影响。30名健康参与者在两种条件下以2.5米/秒和3.6米/秒的速度跑步:(1)穿着最少的带有标记的服装,使用智能手机和基于标记的系统记录运动学;(2)穿着平常的跑步服装,仅使用智能手机记录运动学。使用SPM1D和RMSE分析了20个周期内的平均关节角度。尽管SPM1D发现了一些显著差异,但无标记方法产生的运动学波形与基于标记的结果紧密匹配,髋关节的RMSE为5.6°,踝关节为3.5°,膝关节为2.9°。服装的影响最小,所有关节的RMSE均低于2.8°。这些发现突出了基于OpenPifPaf的无标记方法作为一种可用于研究和临床应用的、易于使用、简单且可靠的工具来评估跑步运动学的潜力,即使在自然着装的情况下也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93b8/11819925/64bc3bc84ff0/sensors-25-00934-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验