Suppr超能文献

倾向评分加权法在因果亚组分析中的应用。

Propensity score weighting for causal subgroup analysis.

机构信息

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA.

Berry Consultants, Austin, Texas, USA.

出版信息

Stat Med. 2021 Aug 30;40(19):4294-4309. doi: 10.1002/sim.9029. Epub 2021 May 12.

Abstract

A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias-variance tradeoff in SGA. Finally, we design a new diagnostic graph-the Connect-S plot-for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient-centered results for uterine fibroids (COMPARE-UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.

摘要

在比较效果研究中,一个常见的目标是估计特定患者亚组的治疗效果。尽管在医学研究中得到了广泛应用,但用于此类亚组分析(SGA)的因果推理方法仍不够完善,特别是在观察性研究中。在本文中,我们为因果 SGA 开发了一整套分析方法和可视化工具。首先,我们引入了亚组加权平均治疗效果的估计量,并提供了相应的倾向评分加权估计量。我们表明,在亚组内平衡协变量可以限制亚组因果效应估计量的偏差。其次,我们提出使用重叠加权(OW)方法在亚组内实现精确平衡。我们进一步提出了一种结合 OW 和 LASSO 的方法,以平衡 SGA 中的偏差-方差权衡。最后,我们设计了一种新的诊断图——Connect-S 图,用于可视化亚组协变量平衡。进行了广泛的模拟研究,以比较所提出的方法与几种现有方法。我们将所提出的方法应用于以患者为中心的子宫肌瘤(COMPARE-UF)登记数据的结果,以评估治疗子宫肌瘤症状和生活质量的替代管理方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8564/8360075/f060924f95d0/SIM-40-4294-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验