Maeng Woo-Youl, Lee Yerim, Chen Szu-Han, Kim Kyung Su, Sung Daeun, Tseng Wan-Ling, Kim Gyu-Nam, Koh Young-Hag, Hsueh Yuan-Yu, Koo Jahyun
School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea.
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
Mater Today Bio. 2025 Jan 23;31:101514. doi: 10.1016/j.mtbio.2025.101514. eCollection 2025 Apr.
Treating peripheral nerve injury (PNI) is a prevalent clinical challenge. The improper dispersion of regenerating axons makes it difficult to develop nerve guidance conduits (NGCs) for treating PNI. The multichannel NGCs, designed to mimic the fascicular structure of nerves, are proposed as an alternative to single hollow lumen NGCs. Hydrogel-based NGCs with microscale multichannels resembling actual nerve fascicles are fabricated using digital light processing as 3D printing. Gelatin methacryloyl (GelMA) and polyethylene glycol diacrylate (PEGDA), which are biodegradable and photocurable, are used as the printing solution. The addition of a food-grade dye to the printing solution can prevent overcuring by adjusting the optical path length of light and regulating the polymerization rate. This work further demonstrates that the addition of dyes can enable high-resolution printing, resulting in the achievement of fine multichannels with a diameter of 200 μm. animal studies using a rat sciatic nerve gap model show that GelMA/PEGDA-based multichannel NGCs can significantly improve peripheral nerve regeneration, as indicated by improved paw sensory recoveries, increased hindlimb gait function, and muscle fiber regeneration. Furthermore, the mechanical properties, pore size, and biodegradation rate of the hydrogel constituting the NGCs successfully demonstrate the feasibility of hydrogel-based multichannel NGCs for accelerating neurologic recoveries.
治疗周围神经损伤(PNI)是一项普遍存在的临床挑战。再生轴突的分散不当使得开发用于治疗PNI的神经引导导管(NGC)变得困难。旨在模仿神经束状结构的多通道NGC被提议作为单腔空心NGC的替代方案。使用数字光处理3D打印技术制造了具有类似于实际神经束的微尺度多通道的水凝胶基NGC。将可生物降解且可光固化的甲基丙烯酰化明胶(GelMA)和聚乙二醇二丙烯酸酯(PEGDA)用作打印溶液。向打印溶液中添加食品级染料可以通过调节光程长度和控制聚合速率来防止过度固化。这项工作进一步证明,添加染料可以实现高分辨率打印,从而成功制造出直径为200μm的精细多通道。使用大鼠坐骨神经缺损模型的动物研究表明,基于GelMA/PEGDA的多通道NGC可以显著促进周围神经再生,表现为爪部感觉恢复改善、后肢步态功能增强和肌纤维再生。此外,构成NGC的水凝胶的机械性能、孔径和生物降解速率成功证明了水凝胶基多通道NGC在加速神经恢复方面的可行性。