Suppr超能文献

使用离线强化学习进行冠状动脉疾病治疗的个性化决策

Personalized decision making for coronary artery disease treatment using offline reinforcement learning.

作者信息

Ghasemi Peyman, Greenberg Matthew, Southern Danielle A, Li Bing, White James A, Lee Joon

机构信息

Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.

出版信息

NPJ Digit Med. 2025 Feb 14;8(1):99. doi: 10.1038/s41746-025-01498-1.

Abstract

Choosing optimal revascularization strategies for patients with obstructive coronary artery disease (CAD) remains a clinical challenge. While randomized controlled trials offer population-level insights, gaps remain regarding personalized decision-making for individual patients. We applied off-policy reinforcement learning (RL) to a composite data model from 41,328 unique patients with angiography-confirmed obstructive CAD. In an offline setting, we estimated optimal treatment policies and evaluated these policies using weighted importance sampling. Our findings indicate that RL-guided therapy decisions outperformed physician-based decision making, with RL policies achieving up to 32% improvement in expected rewards based on composite major cardiovascular events outcomes. Additionally, we introduced methods to ensure that RL CAD treatment policies remain compatible with locally achievable clinical practice models, presenting an interpretable RL policy with a limited number of states. Overall, this novel RL-based clinical decision support tool, RL4CAD, demonstrates potential to optimize care in patients with obstructive CAD referred for invasive coronary angiography.

摘要

为患有阻塞性冠状动脉疾病(CAD)的患者选择最佳的血运重建策略仍然是一项临床挑战。虽然随机对照试验提供了群体层面的见解,但在针对个体患者的个性化决策方面仍存在差距。我们将离策略强化学习(RL)应用于来自41328名经血管造影确诊为阻塞性CAD的独特患者的综合数据模型。在离线设置中,我们估计了最佳治疗策略,并使用加权重要性采样对这些策略进行了评估。我们的研究结果表明,基于强化学习的治疗决策优于基于医生的决策,基于强化学习的策略在基于复合主要心血管事件结果的预期回报方面实现了高达32%的改善。此外,我们引入了方法来确保基于强化学习的CAD治疗策略与当地可实现的临床实践模型保持兼容,呈现了一种具有有限数量状态的可解释强化学习策略。总体而言,这种基于强化学习的新型临床决策支持工具RL4CAD显示出优化接受侵入性冠状动脉造影的阻塞性CAD患者护理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9601/11825836/c9abdbb6082c/41746_2025_1498_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验