Suppr超能文献

深度神经网络如何为心理学理论提供信息?

How Can Deep Neural Networks Inform Theory in Psychological Science?

作者信息

McGrath Sam Whitman, Russin Jacob, Pavlick Ellie, Feiman Roman

机构信息

Philosophy Department, Department of Cognitive, Linguistic & Psychological Sciences, Brown University.

Department of Computer Science, Department of Cognitive, Linguistic & Psychological Sciences, Brown University.

出版信息

Curr Dir Psychol Sci. 2024 Oct;33(5):325-333. doi: 10.1177/09637214241268098. Epub 2024 Sep 11.

Abstract

Over the last decade, deep neural networks (DNNs) have transformed the state of the art in artificial intelligence. In domains like language production and reasoning, long considered uniquely human abilities, contemporary models have proven capable of strikingly human-like performance. However, in contrast to classical symbolic models, neural networks can be inscrutable even to their designers, making it unclear what significance, if any, they have for theories of human cognition. Two extreme reactions are common. Neural network enthusiasts argue that, because the inner workings of DNNs do not seem to resemble any of the traditional constructs of psychological or linguistic theory, their success renders these theories obsolete and motivates a radical paradigm shift. Neural network skeptics instead take this inability to interpret DNNs in psychological terms to mean that their success is irrelevant to psychological science. In this paper, we review recent work that suggests that the internal mechanisms of DNNs can, in fact, be interpreted in the functional terms characteristic of psychological explanations. We argue that this undermines the shared assumption of both extremes and opens the door for DNNs to inform theories of cognition and its development.

摘要

在过去十年中,深度神经网络(DNN)改变了人工智能的发展现状。在长期以来一直被认为是人类独有的能力领域,如语言生成和推理,当代模型已证明能够展现出惊人的类人性能。然而,与经典符号模型不同,神经网络甚至对其设计者来说也可能难以理解,这使得它们对于人类认知理论的意义(如果有任何意义的话)并不明确。常见的有两种极端反应。神经网络的支持者认为,由于DNN的内部运作似乎与心理或语言理论的任何传统结构都不相似,它们的成功使这些理论过时,并推动了一场激进的范式转变。而神经网络的怀疑者则认为,无法从心理学角度解释DNN意味着它们的成功与心理学科学无关。在本文中,我们回顾了最近的研究工作,这些研究表明DNN的内部机制实际上可以用心理学解释所特有的功能术语来解释。我们认为,这削弱了两种极端观点的共同假设,并为DNN为认知及其发展理论提供信息打开了大门。

相似文献

1
How Can Deep Neural Networks Inform Theory in Psychological Science?深度神经网络如何为心理学理论提供信息?
Curr Dir Psychol Sci. 2024 Oct;33(5):325-333. doi: 10.1177/09637214241268098. Epub 2024 Sep 11.

本文引用的文献

2
5
The development of reasoning by exclusion in infancy.婴儿期排除推理的发展。
Cogn Psychol. 2022 Jun;135:101473. doi: 10.1016/j.cogpsych.2022.101473. Epub 2022 Mar 28.
9
Performance vs. competence in human-machine comparisons.人机比较中的表现与能力。
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26562-26571. doi: 10.1073/pnas.1905334117. Epub 2020 Oct 13.
10
Emergent linguistic structure in artificial neural networks trained by self-supervision.自我监督训练的人工神经网络中的紧急语言结构。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30046-30054. doi: 10.1073/pnas.1907367117. Epub 2020 Jun 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验