Falasinnu Titilola, Hossain Md Belal, Karim Mohammad Ehsanul, Weber Ii Kenneth Arnold, Mackey Sean
Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
BMJ Public Health. 2025 Jan 27;3(1):e001628. doi: 10.1136/bmjph-2024-001628. eCollection 2025.
High-impact chronic pain (HICP) significantly affects the quality of life for millions of U.S. adults, imposing substantial economic/healthcare burdens. Disproportionate effects are observed among racial/ethnic minorities and older adults.
We leveraged the National Health Interview Survey (NHIS) from 2016 (n=32,980), 2017 (n=26,700), and 2021 (n=28,740) to validate and develop analytical models for HICP. Initial models (2016 NHIS data) identified correlates associated with HICP, including hospital stays, diagnosis of specific diseases, psychological symptoms, and employment status. We assessed the models' generalizability and drew comparisons across time. We constructed five validation scenarios to account for variations in the availability of predictor variables across datasets and different time frames for pain assessment questions. We used logistic regression with LASSO and random forest techniques. We assessed model discrimination, calibration, and overall performance using metrics such as area under the curve (AUC), calibration slope, and Brier score.
Scenario 1, validating the NHIS 2016 model against 2017 data, demonstrated excellent discrimination with an AUC of 0.89 (95% CI: 0.88-0.90) for both LASSO and random forest models. Subgroup-specific performance varied, with the lowest AUC among adults aged ≥65 years (0.81, 95% CI: 0.78-0.82) and the highest among Hispanic respondents (0.91, 95% CI: 0.88-0.94). Model calibration was generally robust, although underfitting was observed for Hispanic respondents (calibration slope: 1.31). Scenario 3, testing the NHIS 2016 model on 2021 data, showed reduced discrimination (AUC: 0.82, 95% CI: 0.81-0.83) and overfitting (calibration slopes < 1). De novo models based on 2021 data showed comparable discrimination (AUC: 0.86, 95% CI: 0.85-0.87) but poorer calibration when validated against older datasets.
These findings underscore the potential of these models to guide personalized medicine strategies for HICP, aiming for more preventive rather than reactive healthcare. However, the model's broader applicability requires further validation in varied settings and global populations.
高强度慢性疼痛(HICP)严重影响了数百万美国成年人的生活质量,带来了巨大的经济/医疗负担。在少数族裔和老年人中观察到了不成比例的影响。
我们利用了2016年(n = 32,980)、2017年(n = 26,700)和2021年(n = 28,740)的国家健康访谈调查(NHIS)来验证和开发HICP的分析模型。初始模型(2016年NHIS数据)确定了与HICP相关的因素,包括住院、特定疾病诊断、心理症状和就业状况。我们评估了模型的可推广性并进行了跨时间的比较。我们构建了五个验证场景,以考虑不同数据集之间预测变量可用性的差异以及疼痛评估问题的不同时间框架。我们使用了带有LASSO和随机森林技术的逻辑回归。我们使用曲线下面积(AUC)、校准斜率和布里尔得分等指标评估模型的辨别力、校准和整体性能。
场景1,使用2017年数据验证2016年NHIS模型,对于LASSO和随机森林模型,AUC为0.89(95% CI:0.88 - 0.90),显示出出色的辨别力。特定亚组的表现有所不同,≥65岁成年人的AUC最低(0.81,95% CI:0.78 - 0.82),西班牙裔受访者的AUC最高(0.91,95% CI:0.88 - 0.94)。模型校准总体上较为稳健,尽管西班牙裔受访者存在欠拟合情况(校准斜率:1.31)。场景3,在2021年数据上测试2016年NHIS模型,显示辨别力降低(AUC:0.82,95% CI:0.81 - 0.83)和过拟合(校准斜率 < 1)。基于2021年数据的全新模型显示出相当的辨别力(AUC:0.86,95% CI:0.85 - 0.87),但在针对较旧数据集进行验证时校准较差。
这些发现强调了这些模型在指导HICP个性化医疗策略方面的潜力,目标是实现更多的预防性而非反应性医疗保健。然而,该模型更广泛的适用性需要在不同环境和全球人群中进一步验证。