Suppr超能文献

街道环境因素对不同街道类型的体育休闲骑行道偏好的空间异质性影响。

The spatial heterogeneity effects of street environmental factors on the preference for sports and leisure cycling paths across different street types.

作者信息

Wen Yu, Liu Bingbing, Li Yulan, Chen Xiaoyu, Xu Yingwei

机构信息

School of Arts and Design, Yanshan University, 438, West Section of Hebei Avenue, Qinhuangdao, 066004, China.

Department of Industrial and Systems Engineering, Special Administrative Region of China, Hongkong polytechnic university, Hung Hom, Kowloon, 999077, Hong Kong.

出版信息

BMC Public Health. 2025 Feb 14;25(1):621. doi: 10.1186/s12889-025-21717-4.

Abstract

Current research has not fully explored how streetscape elements in different street spaces affect long-distance, high-speed recreational cycling. As a result, the applicability of existing findings across different street environments is limited, hindering their practical value in urban street design. To address this issue, this study focuses on the core urban area of Hangzhou, China. Streets are functionally categorized based on Point of Interest (POI) data, and Strava crowdsourced data are used to obtain cycling activity trajectories. Streetscape indicators that may influence recreational cycling paths are calculated using streetscape imagery and machine learning techniques. Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models are employed to identify significant streetscape indicators that impact cycling, and spatial heterogeneity in cycling route preferences is analyzed at different scales across street types. The results indicate that: (1) Recreational cyclists prefer mixed-use and scenic streets, particularly those along river corridors or within and around large green spaces. (2) Among the streetscape indicators, safety isolation degree has the most positive impact, followed by facility diversity, motorization level, and green view index, all of which positively influence cycling traffic to varying extents. Interface transparency and disorder negatively affect cycling, with transparency having the strongest influence. (3) In mixed-use, commercial, and life service streets, the effect of streetscape indicators on cycling route preferences varies by spatial location, exhibiting both promoting and inhibiting effects. In scenic streets, streetscape indicators show stronger positive or negative impacts, while in industrial streets, their influence is weaker. Based on these findings, the study proposes strategies for creating cycling-friendly environments tailored to different street types. The results validate and extend existing theories on the interaction between street environments and cycling behavior, offering valuable insights for diagnosing problems and implementing effective interventions to promote cycling-friendly environments, thus contributing to urban health, equity, and sustainable development.

摘要

当前的研究尚未充分探讨不同街道空间中的街景元素如何影响长距离、高速的休闲骑行。因此,现有研究结果在不同街道环境中的适用性有限,阻碍了它们在城市街道设计中的实际价值。为了解决这个问题,本研究聚焦于中国杭州的核心城区。根据兴趣点(POI)数据对街道进行功能分类,并使用Strava众包数据获取骑行活动轨迹。利用街景图像和机器学习技术计算可能影响休闲骑行路径的街景指标。采用普通最小二乘法(OLS)和地理加权回归(GWR)模型来识别影响骑行的重要街景指标,并在不同尺度上分析不同街道类型的骑行路线偏好的空间异质性。结果表明:(1)休闲骑行者更喜欢混合用途和风景优美的街道,特别是那些沿着河流廊道或在大型绿地内部及周边的街道。(2)在街景指标中,安全隔离度的积极影响最大,其次是设施多样性、机动化水平和绿色景观指数,所有这些指标都在不同程度上对骑行交通产生积极影响。界面透明度和无序度对骑行有负面影响,其中透明度的影响最强。(3)在混合用途、商业和生活服务街道中,街景指标对骑行路线偏好的影响因空间位置而异,呈现出促进和抑制两种效果。在风景优美的街道中,街景指标显示出更强的正向或负向影响,而在工业街道中,它们的影响较弱。基于这些发现,该研究提出了针对不同街道类型创建适合骑行环境的策略。研究结果验证并扩展了关于街道环境与骑行行为之间相互作用的现有理论,为诊断问题和实施有效干预措施以促进适合骑行的环境提供了有价值的见解,从而有助于城市健康、公平和可持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d838/11829374/08ca9fcb08ad/12889_2025_21717_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验