室温下金属器件的自主气溶胶与等离子体共喷射打印
Autonomous Aerosol and Plasma Co-Jet Printing of Metallic Devices at Ambient Temperature.
作者信息
Du Yipu, Yang Jinyu, Song Kaidong, Jiang Qiang, Bappy Md Omarsany, Zhu Yuchen, Go David B, Zhang Yanliang
机构信息
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
出版信息
Small. 2025 Mar;21(11):e2409751. doi: 10.1002/smll.202409751. Epub 2025 Feb 16.
Additive manufacturing of metallic materials holds the potential to revolutionize the fabrication of functional devices unattainable via traditional methods. Despite recent advancements, printing metallic materials typically requires thermal processing at elevated temperatures to form dense structures with desired properties, which presents a major challenge for direct printing and integration with temperature-sensitive materials. Herein, a unique co-jet printing (CJP) method is reported integrating an aerosol jet and a non-thermal, atmospheric pressure plasma jet to enable concurrent aerosol deposition of metal nanoparticle inks and in situ sintering at ambient temperature. A machine learning algorithm is integrated with the CJP to perform real-time defect detection and autonomous correction, enhancing the yield of printed films with high electrical conductivity from 44% to 94%. Concurrent printing and sintering eliminate the need for post-printing processing, reducing the overall manufacturing time by multiple folds depending on product size. CJP enables direct printing of functional devices on a variety of temperature-sensitive materials including biological materials. Direct printing of hydration sensors on living plant leaves is demonstrated for long-duration monitoring of hydration level in the plant. The versatile CJP method opens tremendous opportunities to harmoniously integrate abiotic and biotic materials for emerging applications in wearable/implantable devices and biohybrid systems.
金属材料的增材制造有可能彻底改变通过传统方法无法实现的功能器件的制造。尽管最近取得了进展,但打印金属材料通常需要在高温下进行热处理,以形成具有所需性能的致密结构,这对直接打印以及与温度敏感材料的集成提出了重大挑战。在此,报道了一种独特的共喷射打印(CJP)方法,该方法集成了气溶胶喷射和非热大气压等离子体喷射,以实现金属纳米颗粒墨水的同时气溶胶沉积和在环境温度下的原位烧结。一种机器学习算法与CJP集成,以进行实时缺陷检测和自动校正,将高电导率印刷薄膜的产量从44%提高到94%。同时打印和烧结消除了对打印后处理的需求,根据产品尺寸将整体制造时间减少了数倍。CJP能够在包括生物材料在内的各种温度敏感材料上直接打印功能器件。展示了在活植物叶片上直接打印水分传感器,用于长期监测植物中的水分水平。这种通用的CJP方法为在可穿戴/植入式设备和生物混合系统等新兴应用中和谐集成非生物和生物材料提供了巨大机会。