Suppr超能文献

通过基因组后电子病历实现精准医疗的路线图。

A roadmap to precision medicine through post-genomic electronic medical records.

作者信息

Mendez Kevin M, Reinke Stacey N, Kelly Rachel S, Chen Qingwen, Su Mark, McGeachie Michael, Weiss Scott, Broadhurst David I, Lasky-Su Jessica A

机构信息

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia.

出版信息

Nat Commun. 2025 Feb 17;16(1):1700. doi: 10.1038/s41467-025-56442-4.

Abstract

The promise of integrating Electronic Medical Records (EMR) and genetic data for precision medicine has largely fallen short due to its omission of environmental context over time. Post-genomic data can bridge this gap by capturing the real-time dynamic relationship between underlying genetics and the environment. This perspective highlights the pivotal role of integrating EMR and post-genomics for personalized health, reflecting on lessons from past efforts, and outlining a roadmap of challenges and opportunities that must be addressed to realize the potential of precision medicine.

摘要

将电子病历(EMR)与基因数据整合用于精准医疗的前景,由于长期忽略环境背景,在很大程度上未能实现。后基因组数据可以通过捕捉潜在基因与环境之间的实时动态关系来弥合这一差距。这一观点强调了整合电子病历与后基因组学对于个性化健康的关键作用,反思了过去努力中的经验教训,并勾勒出实现精准医疗潜力必须应对的挑战与机遇路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c017/11833060/be24152842dd/41467_2025_56442_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验