Suppr超能文献

利用口服葡萄糖耐量试验衍生的代谢特征来检测超重个体中的暴饮暴食症:一种“寻找”机器学习方法。

Leveraging OGTT derived metabolic features to detect Binge-eating disorder in individuals with high weight: a "seek out" machine learning approach.

作者信息

Rania Marianna, Procopio Anna, Zaffino Paolo, Carbone Elvira Anna, Fiorentino Teresa Vanessa, Andreozzi Francesco, Segura-Garcia Cristina, Cosentino Carlo, Arturi Franco

机构信息

Psychiatry Unit, Outpatient Unit for Clinical Research and Treatment of Eating Disorders, University Hospital Renato Dulbecco, Catanzaro, Italy.

Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy.

出版信息

Transl Psychiatry. 2025 Feb 18;15(1):57. doi: 10.1038/s41398-025-03281-y.

Abstract

Binge eating disorder (BED) carries a 6 times higher risk for obesity and accounts for roughly 30% of type 2 diabetes cases. Timely identification of early glycemic disturbances and comprehensive treatment can impact on the likelihood of associated metabolic complications and the overall outcome. In this study, machine learning techniques were applied to static and dynamic glucose-derived measures to detect BED among 281 individuals with high weight. Data from the classic (2 h) and the extended (5 h) glucose load were computed by multiple algorithms and two models with the most relevant features were trained to detect BED within the sample. The models were then tested on an independent cohort (N = 21). The model based on the 5 h-long glucose load exhibited the best performance (sensitivity = 0.75, specificity = 0.67, F score = 0.71) diagnosing BED in 7 out of 10 cases. Sex, HOMA-IR, HbA1c and plasma glucose in different times, and hypoglycemia events were the most sensitive features for BED diagnosis. This study is the first to use metabolic hallmarks to train ML algorithms for detecting BED in individuals at high risk for metabolic complications. ML techniques applied to objective and reliable glycemic features might prompt the identification of BED among individuals at high risk for metabolic complications, enabling timely and tailored multidisciplinary treatment.

摘要

暴饮暴食症(BED)导致肥胖的风险高出6倍,约占2型糖尿病病例的30%。及时识别早期血糖紊乱并进行综合治疗会影响相关代谢并发症的发生可能性和总体预后。在本研究中,机器学习技术被应用于静态和动态血糖衍生指标,以在281名体重超重个体中检测暴饮暴食症。通过多种算法计算经典(2小时)和延长(5小时)葡萄糖负荷的数据,并训练具有最相关特征的两个模型以在样本中检测暴饮暴食症。然后在一个独立队列(N = 21)上对模型进行测试。基于5小时葡萄糖负荷的模型表现最佳(敏感性 = 0.75,特异性 = 0.67,F值 = 0.71),在10例中有7例诊断出暴饮暴食症。性别、稳态模型评估胰岛素抵抗(HOMA-IR)、糖化血红蛋白(HbA1c)、不同时间的血糖以及低血糖事件是诊断暴饮暴食症最敏感的特征。本研究首次使用代谢特征来训练机器学习算法,以检测有代谢并发症高风险个体中的暴饮暴食症。应用于客观且可靠血糖特征的机器学习技术可能会促使在有代谢并发症高风险个体中识别出暴饮暴食症,从而实现及时且量身定制的多学科治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac15/11836435/72491a30f9d7/41398_2025_3281_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验