Suppr超能文献

基于物理先验均值驱动高斯过程的第一性原理寡肽结构优化:核函数与坐标系协同影响的检验

First-principle oligopeptide structural optimization with physical prior mean-driven Gaussian processes: a test of synergistic impacts of the kernel functional and coordinate system.

作者信息

Chang Yibo, Teng Chong, Bao Junwei Lucas

机构信息

Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA.

出版信息

Phys Chem Chem Phys. 2025 Mar 6;27(10):5087-5097. doi: 10.1039/d4cp04378b.

Abstract

First-principle molecular structural determination is critical in many aspects of computational modeling, and yet, the precise determination of a local minimum for a large-sized organic molecule is time-consuming. The recently developed nonparametric model, the physical Gaussian Processes (GPs) with physics-informed prior mean function, has demonstrated its efficiency in exploring the potential-energy surfaces and molecular geometry optimizations. Two essential ingredients in physical GPs, the kernel functional and the coordinate systems, could impact the optimization efficiency, and yet the choice of which on the model performance has not yet been studied. In this work, we constructed a testing dataset consisting of 20 oligopeptides and performed a systematic investigation using various combinations of coordinates (structural descriptors) and kernel functionals to optimize these biologically interesting molecules to local minima at the density-functional tight-binding (DFTB) quantum mechanical level. We conclude that the combination of the kernel functional form and coordinate systems matter significantly in model performance as well as its robustness in locating local minima. For our testing set, the synergy between the periodic kernel and the non-redundant delocalized internal coordinates yields the best overall performance for physical GPs, significantly superior to other choices.

摘要

第一性原理分子结构测定在计算建模的许多方面都至关重要,然而,精确确定大型有机分子的局部最小值非常耗时。最近开发的非参数模型,即具有物理先验均值函数的物理高斯过程(GPs),已在探索势能面和分子几何结构优化方面展现出其效率。物理高斯过程中的两个关键要素,核函数和坐标系,可能会影响优化效率,然而尚未对其在模型性能方面的选择进行研究。在这项工作中,我们构建了一个由20种寡肽组成的测试数据集,并使用坐标(结构描述符)和核函数的各种组合进行了系统研究,以在密度泛函紧束缚(DFTB)量子力学水平将这些具有生物学意义的分子优化到局部最小值。我们得出结论,核函数形式和坐标系的组合对模型性能及其定位局部最小值的稳健性有显著影响。对于我们的测试集,周期核与非冗余离域内坐标之间的协同作用为物理高斯过程带来了最佳的整体性能,明显优于其他选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验