Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States.
Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
ACS Nano. 2024 Feb 27;18(8):6186-6201. doi: 10.1021/acsnano.3c09027. Epub 2024 Feb 12.
Endocytosis is a major bottleneck toward cytosolic delivery of nucleic acids, as the vast majority of nucleic acid drugs remain trapped within endosomes. Current trends to overcome endosomal entrapment and subsequent degradation provide varied success; however, active delivery agents such as cell-penetrating peptides have emerged as a prominent strategy to improve cytosolic delivery. Yet, these membrane-active agents have poor selectivity for endosomal membranes, leading to toxicity. A hallmark of endosomes is their acidic environment, which aids in degradation of foreign materials. Here, we develop a pH-triggered spherical nucleic acid that provides smart antisense oligonucleotide (ASO) release upon endosomal acidification and selective membrane disruption, termed DNA EndosomaL Escape Vehicle Response (DELVR). We anchor i-Motif DNA to a nanoparticle (AuNP), where the complement strand contains both an ASO sequence and a functionalized endosomal escape peptide (EEP). By orienting the EEP toward the AuNP core, the EEP is inactive until it is released through acidification-induced i-Motif folding. In this study, we characterize a small library of i-Motif duplexes to develop a structure-switching nucleic acid sequence triggered by endosomal acidification. We evaluate antisense efficacy using HIF1a, a hypoxic indicator upregulated in many cancers, and demonstrate dose-dependent activity through RT-qPCR. We show that DELVR significantly improves ASO efficacy . Finally, we use fluorescence lifetime imaging and activity measurement to show that DELVR benefits synergistically from nuclease- and pH-driven release strategies with increased ASO endosomal escape efficiency. Overall, this study develops a modular platform that improves the cytosolic delivery of nucleic acid therapeutics and offers key insights for overcoming intracellular barriers.
内吞作用是将核酸递送到细胞质中的主要瓶颈,因为绝大多数核酸药物仍被困在内体中。目前克服内涵体捕获和随后降解的趋势提供了不同程度的成功;然而,细胞穿透肽等主动递送剂已成为提高细胞质递送的突出策略。然而,这些膜活性剂对内体膜的选择性差,导致毒性。内涵体的一个标志是其酸性环境,有助于降解外来物质。在这里,我们开发了一种 pH 触发的球形核酸,在内涵体酸化时提供智能反义寡核苷酸 (ASO) 释放,并具有选择性的膜破坏作用,称为 DNA 内涵体逃逸载体反应 (DELVR)。我们将 i-Motif DNA 锚定在纳米颗粒 (AuNP) 上,互补链既包含 ASO 序列又包含功能化的内涵体逃逸肽 (EEP)。通过将 EEP 定向到 AuNP 核心,EEP 在通过酸化诱导 i-Motif 折叠释放之前是不活跃的。在这项研究中,我们对一小部分 i-Motif 双链体进行了表征,以开发一种由内涵体酸化触发的结构切换核酸序列。我们使用 HIF1a(许多癌症中上调的缺氧标志物)评估反义功效,并通过 RT-qPCR 证明剂量依赖性活性。我们表明 DELVR 显著提高了 ASO 的功效。最后,我们使用荧光寿命成像和活性测量来表明,DELVR 从核酸酶和 pH 驱动的释放策略中受益,协同提高了 ASO 的内涵体逃逸效率。总体而言,这项研究开发了一种模块化平台,可提高核酸治疗药物的细胞质递送效率,并为克服细胞内障碍提供了关键见解。