Wang Hanzhong, Qiao Xiaoya, Ding Wenxiang, Chen Gaoyu, Miao Ying, Guo Rui, Zhu Xiaohua, Cheng Zhaoping, Xu Jiehua, Li Biao, Huang Qiu
Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Eur J Nucl Med Mol Imaging. 2025 Jul;52(8):3004-3018. doi: 10.1007/s00259-025-07156-8. Epub 2025 Feb 19.
Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate organ segmentation using PET-only data remains challenging. This study develops and validates a deep learning model for multi-organ PET segmentation across varied imaging conditions and tracers, addressing critical needs for fully PET-based quantitative analysis.
This retrospective study employed a 3D deep learning-based model for automated multi-organ segmentation on PET images acquired under diverse conditions, including low-dose and non-attenuation-corrected scans. Using a dataset of 798 patients from multiple centers with varied tracers, model robustness and generalizability were evaluated via multi-center and cross-tracer tests. Ground-truth labels for 23 organs were generated from CT images, and segmentation accuracy was assessed using the Dice similarity coefficient (DSC).
In the multi-center dataset from four different institutions, our model achieved average DSC values of 0.834, 0.825, 0.819, and 0.816 across varying dose reduction factors and correction conditions for FDG PET images. In the cross-tracer dataset, the model reached average DSC values of 0.737, 0.573, 0.830, 0.661, and 0.708 for DOTATATE, FAPI, FDG, Grazytracer, and PSMA, respectively.
The proposed model demonstrated effective, fully PET-based multi-organ segmentation across a range of imaging conditions, centers, and tracers, achieving high robustness and generalizability. These findings underscore the model's potential to enhance clinical diagnostic workflows by supporting ultra-low dose PET imaging.
Not applicable. This is a retrospective study based on collected data, which has been approved by the Research Ethics Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine.
正电子发射断层扫描(PET)是一种强大的分子成像工具,可显示放射性示踪剂的分布以揭示生理过程。全身PET的最新进展已实现低剂量、无CT成像;然而,仅使用PET数据进行准确的器官分割仍然具有挑战性。本研究开发并验证了一种深度学习模型,用于在各种成像条件和示踪剂下进行多器官PET分割,满足了基于PET的全定量分析的关键需求。
本回顾性研究采用基于3D深度学习的模型,对在包括低剂量和未进行衰减校正扫描等不同条件下采集的PET图像进行自动多器官分割。使用来自多个中心的798例患者的数据集,其中包含不同的示踪剂,通过多中心和跨示踪剂测试评估模型的稳健性和通用性。从CT图像生成23个器官的真实标签,并使用Dice相似系数(DSC)评估分割准确性。
在来自四个不同机构的多中心数据集中,我们的模型在不同剂量降低因子和校正条件下,对FDG PET图像的平均DSC值分别达到0.834、0.825、0.819和0.816。在跨示踪剂数据集中,该模型对DOTATATE、FAPI、FDG、Grazytracer和PSMA的平均DSC值分别达到0.737、0.573、0.830、0.661和0.708。
所提出的模型在一系列成像条件、中心和示踪剂下展示了有效的、基于PET的全多器官分割,具有高稳健性和通用性。这些发现强调了该模型通过支持超低剂量PET成像来增强临床诊断工作流程的潜力。
不适用。这是一项基于收集数据的回顾性研究,已获得上海交通大学医学院附属瑞金医院研究伦理委员会的批准。