Suppr超能文献

用于超低剂量全身PET成像中多器官分割的强大且可推广的人工智能:一项多中心和跨示踪剂研究。

Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study.

作者信息

Wang Hanzhong, Qiao Xiaoya, Ding Wenxiang, Chen Gaoyu, Miao Ying, Guo Rui, Zhu Xiaohua, Cheng Zhaoping, Xu Jiehua, Li Biao, Huang Qiu

机构信息

Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Eur J Nucl Med Mol Imaging. 2025 Jul;52(8):3004-3018. doi: 10.1007/s00259-025-07156-8. Epub 2025 Feb 19.

Abstract

PURPOSE

Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate organ segmentation using PET-only data remains challenging. This study develops and validates a deep learning model for multi-organ PET segmentation across varied imaging conditions and tracers, addressing critical needs for fully PET-based quantitative analysis.

MATERIALS AND METHODS

This retrospective study employed a 3D deep learning-based model for automated multi-organ segmentation on PET images acquired under diverse conditions, including low-dose and non-attenuation-corrected scans. Using a dataset of 798 patients from multiple centers with varied tracers, model robustness and generalizability were evaluated via multi-center and cross-tracer tests. Ground-truth labels for 23 organs were generated from CT images, and segmentation accuracy was assessed using the Dice similarity coefficient (DSC).

RESULTS

In the multi-center dataset from four different institutions, our model achieved average DSC values of 0.834, 0.825, 0.819, and 0.816 across varying dose reduction factors and correction conditions for FDG PET images. In the cross-tracer dataset, the model reached average DSC values of 0.737, 0.573, 0.830, 0.661, and 0.708 for DOTATATE, FAPI, FDG, Grazytracer, and PSMA, respectively.

CONCLUSION

The proposed model demonstrated effective, fully PET-based multi-organ segmentation across a range of imaging conditions, centers, and tracers, achieving high robustness and generalizability. These findings underscore the model's potential to enhance clinical diagnostic workflows by supporting ultra-low dose PET imaging.

CLINICAL TRIAL NUMBER

Not applicable. This is a retrospective study based on collected data, which has been approved by the Research Ethics Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine.

摘要

目的

正电子发射断层扫描(PET)是一种强大的分子成像工具,可显示放射性示踪剂的分布以揭示生理过程。全身PET的最新进展已实现低剂量、无CT成像;然而,仅使用PET数据进行准确的器官分割仍然具有挑战性。本研究开发并验证了一种深度学习模型,用于在各种成像条件和示踪剂下进行多器官PET分割,满足了基于PET的全定量分析的关键需求。

材料与方法

本回顾性研究采用基于3D深度学习的模型,对在包括低剂量和未进行衰减校正扫描等不同条件下采集的PET图像进行自动多器官分割。使用来自多个中心的798例患者的数据集,其中包含不同的示踪剂,通过多中心和跨示踪剂测试评估模型的稳健性和通用性。从CT图像生成23个器官的真实标签,并使用Dice相似系数(DSC)评估分割准确性。

结果

在来自四个不同机构的多中心数据集中,我们的模型在不同剂量降低因子和校正条件下,对FDG PET图像的平均DSC值分别达到0.834、0.825、0.819和0.816。在跨示踪剂数据集中,该模型对DOTATATE、FAPI、FDG、Grazytracer和PSMA的平均DSC值分别达到0.737、0.573、0.830、0.661和0.708。

结论

所提出的模型在一系列成像条件、中心和示踪剂下展示了有效的、基于PET的全多器官分割,具有高稳健性和通用性。这些发现强调了该模型通过支持超低剂量PET成像来增强临床诊断工作流程的潜力。

临床试验编号

不适用。这是一项基于收集数据的回顾性研究,已获得上海交通大学医学院附属瑞金医院研究伦理委员会的批准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验