Zheng Zhi, Zheng Lyuqin, Arter Meret, Liu Kaixian, Yamada Shintaro, Ontoso David, Kim Soonjoung, Keeney Scott
Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nature. 2025 Mar;639(8055):784-791. doi: 10.1038/s41586-025-08601-2. Epub 2025 Feb 19.
Meiotic recombination starts with SPO11 generation of DNA double-strand breaks (DSBs). SPO11 is critical for meiosis in most species, but it generates dangerous DSBs with mutagenic and gametocidal potential. Cells must therefore utilize the beneficial functions of SPO11 while minimizing its risks-how they do so remains poorly understood. Here we report reconstitution of DNA cleavage in vitro with purified recombinant mouse SPO11 bound to TOP6BL. SPO11-TOP6BL complexes are monomeric (1:1) in solution and bind tightly to DNA, but dimeric (2:2) assemblies cleave DNA to form covalent 5' attachments that require SPO11 active-site residues, divalent metal ions and SPO11 dimerization. SPO11 can also reseal DNA that it has nicked. Structure modelling with AlphaFold 3 suggests that DNA is bent prior to cleavage. In vitro cleavage displays a sequence bias that partially explains DSB site preferences in vivo. Cleavage is inefficient on complex DNA substrates, partly because SPO11 is readily trapped in DSB-incompetent (presumably monomeric) binding states that exchange slowly. However, cleavage is improved with substrates that favour dimer assembly or by artificially dimerizing SPO11. Our results inform a model in which intrinsically weak dimerization restrains SPO11 activity in vivo, making it exquisitely dependent on accessory proteins that focus and control DSB formation.
减数分裂重组始于SPO11产生的DNA双链断裂(DSB)。SPO11对大多数物种的减数分裂至关重要,但它会产生具有诱变和杀配子潜力的危险DSB。因此,细胞必须在利用SPO11有益功能的同时将其风险降至最低——它们如何做到这一点仍知之甚少。在这里,我们报告了用与TOP6BL结合的纯化重组小鼠SPO11在体外重建DNA切割。SPO11-TOP6BL复合物在溶液中是单体(1:1),并与DNA紧密结合,但二聚体(2:2)组装体切割DNA以形成共价5'连接,这需要SPO11活性位点残基、二价金属离子和SPO11二聚化。SPO11还可以重新封闭它切割的DNA。使用AlphaFold 3进行的结构建模表明,DNA在切割前会发生弯曲。体外切割表现出序列偏好,这部分解释了体内DSB位点偏好。在复杂的DNA底物上切割效率低下,部分原因是SPO11很容易被困在无DSB活性(可能是单体)的结合状态中,这种状态交换缓慢。然而,使用有利于二聚体组装的底物或通过人工使SPO11二聚化可以提高切割效率。我们的结果为一个模型提供了依据,在该模型中,内在的弱二聚化在体内抑制了SPO11的活性,使其极度依赖于集中和控制DSB形成的辅助蛋白。