Çay Talip
Electrical and Electronics Engineering, Yozgat Bozok University, Yozgat, Turkey.
Biomed Mater Eng. 2025 Jul;36(4):209-221. doi: 10.1177/09592989241308775. Epub 2025 Jan 31.
BackgroundLung cancer is a leading cause of cancer-related deaths worldwide, making early diagnosis crucial for improving treatment success and survival rates. Traditional diagnostic methods, such as biopsy and manual CT image interpretation, are time-consuming and prone to variability, highlighting the need for more efficient and accurate tools. Advances in deep learning offer promising solutions by enabling faster and more objective medical image analysis.ObjectiveThis study aims to classify benign, malignant, and normal lung CT images using advanced deep learning techniques, including a specially developed CNN model, to improve diagnostic accuracy.MethodsA dataset of 1097 lung CT images was balanced using GANs and preprocessed with techniques like histogram equalization and noise reduction. The data was split into 70% training and 30% testing sets. Models including VGG19, AlexNet, InceptionV3, ResNet50, and a custom-designed CNN were trained. Additionally, Faster R-CNN-based region proposal methods were integrated to enhance detection performance.ResultsThe custom CNN model achieved the highest accuracy at 99%, surpassing other architectures like VGG19, which reached 97%. The Faster R-CNN integration further improved sensitivity and classification precision.ConclusionThe results demonstrate the effectiveness of GAN-supported deep learning models for lung cancer classification, highlighting their potential clinical applications for early detection and diagnosis.
背景
肺癌是全球癌症相关死亡的主要原因,因此早期诊断对于提高治疗成功率和生存率至关重要。传统的诊断方法,如活检和手动CT图像解读,既耗时又容易出现差异,这凸显了对更高效、准确工具的需求。深度学习的进展通过实现更快、更客观的医学图像分析提供了有前景的解决方案。
目的
本研究旨在使用先进的深度学习技术,包括专门开发的CNN模型,对良性、恶性和正常肺CT图像进行分类,以提高诊断准确性。
方法
使用生成对抗网络(GAN)对1097张肺CT图像的数据集进行平衡,并采用直方图均衡化和降噪等技术进行预处理。数据被分为70%的训练集和30%的测试集。对包括VGG19、AlexNet、InceptionV3、ResNet50和定制设计的CNN在内的模型进行了训练。此外,集成了基于更快区域卷积神经网络(Faster R-CNN)的区域提议方法以提高检测性能。
结果
定制的CNN模型达到了最高准确率99%,超过了VGG19等其他架构,后者的准确率为97%。Faster R-CNN集成进一步提高了敏感性和分类精度。
结论
结果证明了GAN支持的深度学习模型在肺癌分类中的有效性,突出了它们在早期检测和诊断中的潜在临床应用。