Suppr超能文献

非比例风险下随机对照试验中事件发生时间分析的统计方法比较

A Comparison of Statistical Methods for Time-To-Event Analyses in Randomized Controlled Trials Under Non-Proportional Hazards.

作者信息

Klinglmüller Florian, Fellinger Tobias, König Franz, Friede Tim, Hooker Andrew C, Heinzl Harald, Mittlböck Martina, Brugger Jonas, Bardo Maximilian, Huber Cynthia, Benda Norbert, Posch Martin, Ristl Robin

机构信息

Austrian Agency for Health and Food Safety, Vienna, Austria.

Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.

出版信息

Stat Med. 2025 Feb 28;44(5):e70019. doi: 10.1002/sim.70019.

Abstract

While well-established methods for time-to-event data are available when the proportional hazards assumption holds, there is no consensus on the best inferential approach under non-proportional hazards (NPH). However, a wide range of parametric and non-parametric methods for testing and estimation in this scenario have been proposed. To provide recommendations on the statistical analysis of clinical trials where non-proportional hazards are expected, we conducted a simulation study under different scenarios of non-proportional hazards, including delayed onset of treatment effect, crossing hazard curves, subgroups with different treatment effects, and changing hazards after disease progression. We assessed type I error rate control, power, and confidence interval coverage, where applicable, for a wide range of methods, including weighted log-rank tests, the MaxCombo test, summary measures such as the restricted mean survival time (RMST), average hazard ratios, and milestone survival probabilities, as well as accelerated failure time regression models. We found a trade-off between interpretability and power when choosing an analysis strategy under NPH scenarios. While analysis methods based on weighted logrank tests typically were favorable in terms of power, they do not provide an easily interpretable treatment effect estimate. Also, depending on the weight function, they test a narrow null hypothesis of equal hazard functions, and rejection of this null hypothesis may not allow for a direct conclusion of treatment benefit in terms of the survival function. In contrast, non-parametric procedures based on well-interpretable measures like the RMST difference had lower power in most scenarios. Model-based methods based on specific survival distributions had larger power; however, often gave biased estimates and lower than nominal confidence interval coverage. The application of the studied methods is illustrated in a case study with reconstructed data from a phase III oncologic trial.

摘要

当比例风险假设成立时,已有成熟的生存时间数据处理方法,但对于非比例风险(NPH)情况下的最佳推断方法尚无共识。然而,针对这种情况,已经提出了广泛的参数化和非参数化检验与估计方法。为了对预期存在非比例风险的临床试验统计分析提供建议,我们在不同的非比例风险场景下进行了模拟研究,包括治疗效果延迟出现、风险曲线交叉、具有不同治疗效果的亚组以及疾病进展后风险变化。我们评估了一系列方法的I型错误率控制、检验效能和置信区间覆盖情况(如适用),这些方法包括加权对数秩检验、MaxCombo检验、诸如受限平均生存时间(RMST)、平均风险比和里程碑生存概率等汇总指标,以及加速失效时间回归模型。我们发现在非比例风险场景下选择分析策略时,可解释性和检验效能之间存在权衡。虽然基于加权对数秩检验的分析方法通常在检验效能方面更具优势,但它们无法提供易于解释的治疗效果估计。此外,根据权重函数,它们检验的是风险函数相等这一狭义的原假设,而拒绝该原假设可能无法直接得出关于生存函数的治疗益处结论。相比之下,基于RMST差异等易于解释的指标的非参数方法在大多数情况下检验效能较低。基于特定生存分布的模型方法检验效能较高;然而,往往会给出有偏估计且置信区间覆盖低于名义水平。通过一项使用III期肿瘤试验重建数据的案例研究说明了所研究方法的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2431/11840476/133ebe1e61a8/SIM-44-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验