Rong Ruichen, Gu Zifan, Lai Hongyin, Nelson Tanna L, Keller Tony, Walker Clark, Jin Kevin W, Chen Catherine, Navar Ann Marie, Velasco Ferdinand, Peterson Eric D, Xiao Guanghua, Yang Donghan M, Xie Yang
Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA.
Texas Health Resources, Arlington, Texas.
medRxiv. 2025 Jan 23:2025.01.21.25320916. doi: 10.1101/2025.01.21.25320916.
Recent advances in deep learning show significant potential in analyzing continuous monitoring electronic health records (EHR) data for clinical outcome prediction. We aim to develop a Transformer-based, Encounter-level Clinical Outcome (TECO) model to predict mortality in the intensive care unit (ICU) using inpatient EHR data.
TECO was developed using multiple baseline and time-dependent clinical variables from 2579 hospitalized COVID-19 patients to predict ICU mortality, and was validated externally in an ARDS cohort (n=2799) and a sepsis cohort (n=6622) from the Medical Information Mart for Intensive Care (MIMIC)-IV. Model performance was evaluated based on area under the receiver operating characteristic (AUC) and compared with Epic Deterioration Index (EDI), random forest (RF), and extreme gradient boosting (XGBoost).
In the COVID-19 development dataset, TECO achieved higher AUC (0.89-0.97) across various time intervals compared to EDI (0.86-0.95), RF (0.87-0.96), and XGBoost (0.88-0.96). In the two MIMIC testing datasets (EDI not available), TECO yielded higher AUC (0.65-0.76) than RF (0.57-0.73) and XGBoost (0.57-0.73). In addition, TECO was able to identify clinically interpretable features that were correlated with the outcome.
TECO outperformed proprietary metrics and conventional machine learning models in predicting ICU mortality among COVID-19 and non-COVID-19 patients.
TECO demonstrates a strong capability for predicting ICU mortality using continuous monitoring data. While further validation is needed, TECO has the potential to serve as a powerful early warning tool across various diseases in inpatient settings.
深度学习的最新进展在分析连续监测的电子健康记录(EHR)数据以预测临床结局方面显示出巨大潜力。我们旨在开发一种基于Transformer的住院临床结局(TECO)模型,使用住院患者的EHR数据预测重症监护病房(ICU)的死亡率。
TECO利用2579例住院COVID-19患者的多个基线和时间依赖性临床变量开发,以预测ICU死亡率,并在重症监护医学信息集市(MIMIC)-IV的急性呼吸窘迫综合征队列(n = 2799)和脓毒症队列(n = 6622)中进行外部验证。基于受试者操作特征曲线下面积(AUC)评估模型性能,并与Epic病情恶化指数(EDI)、随机森林(RF)和极端梯度提升(XGBoost)进行比较。
在COVID-19开发数据集中,与EDI(0.86 - 0.95)、RF(0.87 - 0.96)和XGBoost(0.88 - 0.96)相比,TECO在各个时间间隔内均实现了更高的AUC(0.89 - 0.97)。在两个MIMIC测试数据集中(无EDI数据),TECO的AUC(0.65 - 0.76)高于RF(0.57 - 0.73)和XGBoost(0.57 - 0.73)。此外,TECO能够识别与结局相关的具有临床可解释性的特征。
在预测COVID-19和非COVID-19患者的ICU死亡率方面,TECO优于专有指标和传统机器学习模型。
TECO展示了使用连续监测数据预测ICU死亡率的强大能力。虽然需要进一步验证,但TECO有潜力作为住院环境中各种疾病的强大早期预警工具。