Suppr超能文献

用于重症监护多模态生存预测的医疗变压器:成像和非成像数据的集成。

Medical transformer for multimodal survival prediction in intensive care: integration of imaging and non-imaging data.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany.

Department of Medicine III, University Hospital Aachen, Aachen, Germany.

出版信息

Sci Rep. 2023 Jul 1;13(1):10666. doi: 10.1038/s41598-023-37835-1.

Abstract

When clinicians assess the prognosis of patients in intensive care, they take imaging and non-imaging data into account. In contrast, many traditional machine learning models rely on only one of these modalities, limiting their potential in medical applications. This work proposes and evaluates a transformer-based neural network as a novel AI architecture that integrates multimodal patient data, i.e., imaging data (chest radiographs) and non-imaging data (clinical data). We evaluate the performance of our model in a retrospective study with 6,125 patients in intensive care. We show that the combined model (area under the receiver operating characteristic curve [AUROC] of 0.863) is superior to the radiographs-only model (AUROC = 0.811, p < 0.001) and the clinical data-only model (AUROC = 0.785, p < 0.001) when tasked with predicting in-hospital survival per patient. Furthermore, we demonstrate that our proposed model is robust in cases where not all (clinical) data points are available.

摘要

当临床医生评估重症监护患者的预后时,他们会考虑影像学和非影像学数据。相比之下,许多传统的机器学习模型仅依赖于其中一种模式,限制了它们在医学应用中的潜力。本研究提出并评估了一种基于转换器的神经网络,作为一种将多模态患者数据(影像学数据(胸片)和非影像学数据(临床数据))整合在一起的新型人工智能架构。我们在一项涉及 6125 名重症监护患者的回顾性研究中评估了我们模型的性能。我们发现,与仅使用影像学数据的模型(AUROC=0.811,p<0.001)和仅使用临床数据的模型(AUROC=0.785,p<0.001)相比,联合模型(AUROC=0.863)在预测每位患者住院期间的生存率方面表现更优。此外,我们还证明了在并非所有(临床)数据点都可用的情况下,我们提出的模型是稳健的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e1/10314902/589be9d40e9e/41598_2023_37835_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验