Suppr超能文献

心血管疾病诊断与治疗中脂质代谢靶点的优先级确定

Prioritization of Lipid Metabolism Targets for the Diagnosis and Treatment of Cardiovascular Diseases.

作者信息

Wang Zhihua, Chen Shuo, Zhang Fanshun, Akhmedov Shamil, Weng Jianping, Xu Suowen

机构信息

Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.

Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei 230001, China.

出版信息

Research (Wash D C). 2025 Feb 19;8:0618. doi: 10.34133/research.0618. eCollection 2025.

Abstract

Cardiovascular diseases (CVD) are a major global health issue strongly associated with altered lipid metabolism. However, lipid metabolism-related pharmacological targets remain limited, leaving the therapeutic challenge of residual lipid-associated cardiovascular risk. The purpose of this study is to identify potentially novel lipid metabolism-related genes by systematic genomic and phenomics analysis, with an aim to discovering potentially new therapeutic targets and diagnosis biomarkers for CVD. In this study, we conducted a comprehensive and multidimensional evaluation of 881 lipid metabolism-related genes. Using genome-wide association study (GWAS)-based mendelian randomization (MR) causal inference methods, we screened for genes causally linked to the occurrence and development of CVD. Further validation was performed through colocalization analysis in 2 independent cohorts. Then, we employed reverse screening using phenonome-wide association studies (PheWAS) and a drug target-drug association analysis. Finally, we integrated serum proteomic data to develop a machine learning model comprising 5 proteins for disease prediction. Our initial screening yielded 54 genes causally linked to CVD. Colocalization analysis in validation cohorts prioritized this to 29 genes marked correlated with CVD. Comparison and interaction analysis identified 13 therapeutic targets with potential for treating CVD and its complications. A machine learning model incorporating 5 proteins for CVD prediction achieved a high accuracy of 96.1%, suggesting its potential as a diagnostic tool in clinical practice. This study comprehensively reveals the complex relationship between lipid metabolism regulatory targets and CVD. Our findings provide new insights into the pathogenesis of CVD and identify potential therapeutic targets and drugs for its treatment. Additionally, the machine learning model developed in this study offers a promising tool for the diagnosis and prediction of CVD, paving the way for future research and clinical applications.

摘要

心血管疾病(CVD)是一个重大的全球健康问题,与脂质代谢改变密切相关。然而,与脂质代谢相关的药理靶点仍然有限,这使得残余脂质相关心血管风险的治疗面临挑战。本研究的目的是通过系统的基因组学和表型组学分析,识别潜在的新型脂质代谢相关基因,以期发现CVD潜在的新治疗靶点和诊断生物标志物。在本研究中,我们对881个脂质代谢相关基因进行了全面的多维度评估。使用基于全基因组关联研究(GWAS)的孟德尔随机化(MR)因果推断方法,我们筛选出与CVD发生发展因果相关的基因。通过在2个独立队列中的共定位分析进行进一步验证。然后,我们采用表型组全关联研究(PheWAS)和药物靶点 - 药物关联分析进行反向筛选。最后,我们整合血清蛋白质组数据,开发了一个包含5种蛋白质的机器学习模型用于疾病预测。我们的初步筛选产生了54个与CVD因果相关的基因。验证队列中的共定位分析将其优先排序为29个与CVD显著相关的基因。比较和相互作用分析确定了13个具有治疗CVD及其并发症潜力的治疗靶点。一个包含5种蛋白质用于CVD预测的机器学习模型达到了96.1%的高精度,表明其在临床实践中作为诊断工具的潜力。本研究全面揭示了脂质代谢调控靶点与CVD之间的复杂关系。我们的发现为CVD的发病机制提供了新见解,并确定了潜在的治疗靶点和治疗药物。此外,本研究中开发的机器学习模型为CVD的诊断和预测提供了一个有前景的工具,为未来的研究和临床应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39ff/11836198/c6d46e93aecd/research.0618.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验