Harmanani Mohamed, Wilson Paul F R, To Minh Nguyen Nhat, Gilany Mahdi, Jamzad Amoon, Fooladgar Fahimeh, Wodlinger Brian, Abolmaesumi Purang, Mousavi Parvin
Queen's University, Kingston, Canada.
Vector Institute, Toronto, Canada.
Int J Comput Assist Radiol Surg. 2025 May;20(5):981-989. doi: 10.1007/s11548-025-03335-y. Epub 2025 Feb 20.
While deep learning methods have shown great promise in improving the effectiveness of prostate cancer (PCa) diagnosis by detecting suspicious lesions from trans-rectal ultrasound (TRUS), they must overcome multiple simultaneous challenges. There is high heterogeneity in tissue appearance, significant class imbalance in favor of benign examples, and scarcity in the number and quality of ground truth annotations available to train models. Failure to address even a single one of these problems can result in unacceptable clinical outcomes.
We propose TRUSWorthy, a carefully designed, tuned, and integrated system for reliable PCa detection. Our pipeline integrates self-supervised learning, multiple-instance learning aggregation using transformers, random-undersampled boosting and ensembling: These address label scarcity, weak labels, class imbalance, and overconfidence, respectively. We train and rigorously evaluate our method using a large, multi-center dataset of micro-ultrasound data.
Our method outperforms previous state-of-the-art deep learning methods in terms of accuracy and uncertainty calibration, with AUROC and balanced accuracy scores of 79.9% and 71.5%, respectively. On the top 20% of predictions with the highest confidence, we can achieve a balanced accuracy of up to 91%.
The success of TRUSWorthy demonstrates the potential of integrated deep learning solutions to meet clinical needs in a highly challenging deployment setting, and is a significant step toward creating a trustworthy system for computer-assisted PCa diagnosis.
虽然深度学习方法在通过经直肠超声(TRUS)检测可疑病变来提高前列腺癌(PCa)诊断的有效性方面显示出了巨大的前景,但它们必须克服多个同时存在的挑战。组织外观存在高度异质性,良性样本占主导的显著类别不平衡,以及用于训练模型的真实标注的数量和质量稀缺。即使未能解决这些问题中的任何一个,都可能导致不可接受的临床结果。
我们提出了TRUSWorthy,这是一个经过精心设计、调整和集成的用于可靠PCa检测的系统。我们的管道集成了自监督学习、使用Transformer的多实例学习聚合、随机欠采样增强和集成:这些分别解决了标签稀缺、弱标签、类别不平衡和过度自信的问题。我们使用一个大型多中心微超声数据数据集来训练和严格评估我们的方法。
我们的方法在准确性和不确定性校准方面优于先前的深度学习方法,AUROC和平衡准确率分别为79.9%和71.5%。在置信度最高的前20%预测中,我们可以实现高达91%的平衡准确率。
TRUSWorthy的成功证明了集成深度学习解决方案在极具挑战性的部署环境中满足临床需求的潜力,并且是朝着创建一个用于计算机辅助PCa诊断的可信系统迈出的重要一步。