Kulkarni Ameya Madhav, Kruse Danielle, Harper Kelly, Lam Eric, Osman Hoda, Ansari Danyaal H, Sivanesan Umaseh, Bashir Mustafa R, Costa Andreu F, McInnes Matthew, van der Pol Christian B
Department of Medical Imaging, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada.
Department of Diagnostic Imaging, Juravinski Hospital and Cancer Centre, Hamilton Health Sciences, Hamilton, Ontario, Canada.
J Magn Reson Imaging. 2025 Sep;62(3):640-653. doi: 10.1002/jmri.29748. Epub 2025 Feb 21.
The American College of Radiology Liver Imaging Reporting and Data System (LI-RADS) is the preeminent framework for classification and risk stratification of liver observations on imaging in patients at high risk for hepatocellular carcinoma. In this review, the pathogenesis of hepatocellular carcinoma and the use of MRI in LI-RADS is discussed, including specifically the LI-RADS diagnostic algorithm, its components, and its reproducibility with reference to the latest supporting evidence. The LI-RADS treatment response algorithms are reviewed, including the more recent radiation treatment response algorithm. The application of artificial intelligence, points of controversy, LI-RADS relative to other liver imaging systems, and possible future directions are explored. After reading this article, the reader will have an understanding of the foundation and application of LI-RADS as well as possible future directions.
美国放射学会肝脏影像报告和数据系统(LI-RADS)是对肝细胞癌高危患者肝脏影像观察进行分类和风险分层的卓越框架。在本综述中,讨论了肝细胞癌的发病机制以及MRI在LI-RADS中的应用,具体包括LI-RADS诊断算法、其组成部分以及参考最新支持证据的可重复性。对LI-RADS治疗反应算法进行了综述,包括最新的放射治疗反应算法。探讨了人工智能的应用、争议点、LI-RADS相对于其他肝脏影像系统的情况以及可能的未来方向。阅读本文后,读者将了解LI-RADS的基础和应用以及可能的未来方向。
J Magn Reson Imaging. 2025-9
Abdom Radiol (NY). 2024-12-13
Abdom Radiol (NY). 2024-12-19
Can Assoc Radiol J. 2025-5
Sensors (Basel). 2024-7-18