Suppr超能文献

人工智能在 LI-RADS 分类中的附加价值:系统评价。

The added value of artificial intelligence to LI-RADS categorization: A systematic review.

机构信息

Artificial Intelligence Center, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy.

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy; Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Italy.

出版信息

Eur J Radiol. 2022 May;150:110251. doi: 10.1016/j.ejrad.2022.110251. Epub 2022 Mar 11.

Abstract

PURPOSE

The objective of this systematic review was to critically assess the available literature on deep learning (DL) and radiomics applied to the Liver Imaging Reporting and Data System (LI-RADS) in terms of 1) automatic LI-RADS classification of liver nodules; 2) the contribution of DL and radiomics to human evaluation in the classification of liver nodules following LI-RADS protocol.

MATERIALS AND METHODS

A literature search was conducted to identify original research studies published up to April 2021. The inclusion criteria were: English language, focus on computed tomography (CT) and/or magnetic resonance (MR) with specified number of patients and lesions, adoption of LI-RADS classification for the detected hepatic lesions, and application of AI in the classification of liver nodules. Review articles, conference papers, editorials and commentaries, animal studies or studies with absence of AI and/or LI-RADS were excluded. After screening 221 articles, 11 studies were included in this review.

RESULTS

All the included studies proved that DL and radiomics have high performances in liver nodules classification, sometimes similar or better than human evaluation. The best performances of DL was an AUC of 0.95 on MR and the best performance of radiomics was AUC of 0.98 either on CT and MR, while the lower ones were respectively AUC of 0.63 either on CT and MR for DL and AUC of 0.70 on CT for radiomics.

CONCLUSION

DL and radiomics could be a useful tool in assisting radiologists in the diagnosis and classification of liver nodules according to LI-RADS.

摘要

目的

本系统评价的目的是批判性地评估深度学习(DL)和放射组学应用于 Liver Imaging Reporting and Data System(LI-RADS)的现有文献,从以下两个方面进行评估:1)肝脏结节的 LI-RADS 自动分类;2)DL 和放射组学在 LI-RADS 协议指导下对肝脏结节分类中对人类评估的贡献。

材料与方法

对截至 2021 年 4 月发表的原始研究进行文献检索。纳入标准为:英语、重点为计算机断层扫描(CT)和/或磁共振(MR),具有明确的患者和病变数量,采用 LI-RADS 分类对检测到的肝脏病变进行分类,以及在肝脏结节分类中应用人工智能。排除综述文章、会议论文、社论和评论、动物研究或缺乏人工智能和/或 LI-RADS 的研究。在筛选了 221 篇文章后,有 11 项研究纳入了本次综述。

结果

所有纳入的研究均证明,DL 和放射组学在肝脏结节分类中具有较高的性能,有时与人类评估相似或更好。DL 的最佳性能是在 MR 上的 AUC 为 0.95,放射组学的最佳性能是在 CT 和 MR 上的 AUC 为 0.98,而较低的分别是在 CT 和 MR 上的 AUC 为 0.63 和在 CT 上的 AUC 为 0.70。

结论

DL 和放射组学可作为辅助放射科医生根据 LI-RADS 诊断和分类肝脏结节的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验