Kumar Joshin, Xu Meng, Li Yuezhi August, You Shu-Wen, Doherty Brookelyn M, Gardiner Woodrow D, Cirrito John R, Yuede Carla M, Benegal Ananya, Vahey Michael D, Joshi Astha, Seehra Kuljeet, Boon Adrianus C M, Huang Yin-Yuan, Puthussery Joseph V, Chakrabarty Rajan K
Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States.
ACS Sens. 2025 May 23;10(5):3381-3389. doi: 10.1021/acssensors.4c03087. Epub 2025 Feb 21.
Airborne transmission via aerosols is a dominant route for the transmission of respiratory pathogens, including avian H5N1 influenza A virus and bacteria. Rapid and direct detection of respiratory pathogen aerosols has been a long-standing technical challenge. Herein, we develop a novel label-free capacitive biosensor using an interlocked Prussian blue (PB)/graphene oxide (GO) network on a screen-printed carbon electrode (SPCE) for direct detection of avian H5N1 and . A single-step electro--deposition process grows GO branches on the SPCE surface, while the PB nanocrystals simultaneously decorate around the GO branches, resulting in an ultrasensitive capacitive response at nanofarad levels. We tested the biosensor for H5N1 concentrations from 2.0 viral RNA copies/mL to 1.6 × 10 viral RNA copies/mL, with a limit of detection (LoD) of 56 viral RNA copies/mL. We tested it on for concentrations ranging from 2.0 bacterial cells/mL to 1.8 × 10 bacterial cells/mL, with a LoD of 5 bacterial cells/mL. The detection times for both pathogens were under 5 min. When integrated with a custom-built wet cyclone bioaerosol sampler, our biosensor could detect and quasi-quantitatively estimate H5N1 and concentrations in air with spatial resolutions of 93 viral RNA copies/m and 8 bacterial cells/m, respectively. The quasi-quantification method, based on dilution and binary detection (positive/negative), achieved an overall accuracy of >90% for pathogen-laden aerosol samples. This biosensor is adaptable for multiplexed detection of other respiratory pathogens, making it a versatile tool for real-time airborne pathogen monitoring and risk assessment.
通过气溶胶进行的空气传播是包括甲型H5N1禽流感病毒和细菌在内的呼吸道病原体传播的主要途径。快速直接检测呼吸道病原体气溶胶一直是一项长期存在的技术挑战。在此,我们开发了一种新型的无标记电容式生物传感器,该传感器在丝网印刷碳电极(SPCE)上使用互锁的普鲁士蓝(PB)/氧化石墨烯(GO)网络来直接检测禽H5N1和(此处原文缺失一种细菌名称)。一步电沉积过程在SPCE表面生长出GO分支,而PB纳米晶体同时在GO分支周围进行修饰,从而在纳法拉水平上产生超灵敏的电容响应。我们测试了该生物传感器对H5N1浓度从2.0个病毒RNA拷贝/毫升到1.6×10(此处原文缺失指数)个病毒RNA拷贝/毫升的检测能力,检测限(LoD)为56个病毒RNA拷贝/毫升。我们还测试了它对(此处原文缺失一种细菌名称)浓度从2.0个细菌细胞/毫升到1.8×10(此处原文缺失指数)个细菌细胞/毫升的检测能力,检测限为5个细菌细胞/毫升。两种病原体的检测时间均在5分钟以内。当与定制的湿式旋风生物气溶胶采样器集成时,我们的生物传感器能够分别以93个病毒RNA拷贝/立方米和8个细菌细胞/立方米的空间分辨率检测并准定量估计空气中的H5N1和(此处原文缺失一种细菌名称)浓度。基于稀释和二元检测(阳性/阴性)的准定量方法对载有病原体的气溶胶样本的总体准确率>90%。这种生物传感器适用于其他呼吸道病原体的多重检测,使其成为实时空气传播病原体监测和风险评估的通用工具。