Suppr超能文献

基于阿来替尼数据对非小细胞肺癌肿瘤生长抑制-总生存期模型进行外部验证:使用阿替利珠单抗的研究。

External validation of a tumor growth inhibition-overall survival model in non-small-cell lung cancer based on atezolizumab studies using alectinib data.

机构信息

Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA.

Genentech/Roche, Marseille, France.

出版信息

Cancer Chemother Pharmacol. 2023 Sep;92(3):205-210. doi: 10.1007/s00280-023-04558-z. Epub 2023 Jul 6.

Abstract

BACKGROUND

A modeling framework was previously developed to simulate overall survival (OS) using tumor growth inhibition (TGI) data from six randomized phase 2/3 atezolizumab monotherapy or combination studies in non-small-cell lung cancer (NSCLC). We aimed to externally validate this framework to simulate OS in patients with treatment-naive advanced anaplastic lymphoma kinase (ALK)-positive NSCLC in the alectinib ALEX study.

METHODS

TGI metrics were estimated from a biexponential model using longitudinal tumor size data from a Phase 3 study evaluating alectinib compared with crizotinib in patients with treatment-naive ALK-positive advanced NSCLC. Baseline prognostic factors and TGI metric estimates were used to predict OS.

RESULTS

286 patients were evaluable (at least baseline and one post-baseline tumor size measurements) out of 303 (94%) followed for up to 5 years (cut-off: 29 November 2019). The tumor growth rate estimate and baseline prognostic factors (inflammatory status, tumor burden, Eastern Cooperative Oncology Group performance status, race, line of therapy, and sex) were used to simulate OS in ALEX study. Observed survival distributions for alectinib and crizotinib were within model 95% prediction intervals (PI) for approximately 2 years. Predicted hazard ratio (HR) between alectinib and crizotinib was in agreement with the observed HR (predicted HR 0.612, 95% PI 0.480-0.770 vs. 0.625 observed HR).

CONCLUSION

The TGI-OS model based on unselected or PD-L1 selected NSCLC patients included in atezolizumab trials is externally validated to predict treatment effect (HR) in a biomarker-selected (ALK-positive) population included in alectinib ALEX trial suggesting that TGI-OS models may be treatment independent.

摘要

背景

先前开发了一种建模框架,用于使用来自六项非小细胞肺癌(NSCLC)的随机 2/3 期阿特珠单抗单药或联合治疗研究的肿瘤生长抑制(TGI)数据模拟总生存期(OS)。我们旨在使用评估阿来替尼与克唑替尼用于未经治疗的晚期间变性淋巴瘤激酶(ALK)阳性 NSCLC 患者的 3 期研究中的纵向肿瘤大小数据,来对该框架进行外部验证,以模拟 alectinib ALEX 研究中未经治疗的晚期 ALK 阳性 NSCLC 患者的 OS。

方法

使用来自评估阿来替尼与克唑替尼用于未经治疗的晚期 ALK 阳性 NSCLC 患者的 3 期研究的双指数模型,估计 TGI 指标,从基线和至少一次基线后肿瘤大小测量值中评估。使用基线预后因素和 TGI 指标估计值预测 OS。

结果

303 例患者中,有 286 例(94%)可评估(至少有基线和一次基线后肿瘤大小测量值),随访时间长达 5 年(截止日期:2019 年 11 月 29 日)。使用肿瘤生长率估计值和基线预后因素(炎症状态、肿瘤负担、东部肿瘤协作组表现状态、种族、治疗线和性别)来模拟 ALEX 研究中的 OS。阿来替尼和克唑替尼的观察到的生存分布在模型 95%预测区间(PI)内约 2 年。阿来替尼与克唑替尼之间预测的危险比(HR)与观察到的 HR 一致(预测 HR 0.612,95% PI 0.480-0.770 与观察到的 HR 0.625)。

结论

基于包括在阿特珠单抗试验中的未经选择或 PD-L1 选择的 NSCLC 患者的 TGI-OS 模型,在 alectinib ALEX 试验中,对生物标志物选择(ALK 阳性)人群中的治疗效果(HR)进行了外部验证,表明 TGI-OS 模型可能与治疗无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e4/10363035/1b8f33509884/280_2023_4558_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验