Suppr超能文献

ChatGPT估算的职业复杂性能够预测老年人的认知结果和皮质厚度,且超出社会经济地位的影响。

ChatGPT-estimated occupational complexity predicts cognitive outcomes and cortical thickness above and beyond socioeconomic status among older adults.

作者信息

Yu Junhong, Kua Ee-Heok, Mahendran Rathi, Ng Ted Kheng Siang

机构信息

Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639798, Singapore.

Yeo Boon Kim Mind Science Center, Department of Psychological Medicine, National University of Singapore, Singapore, 119228, Singapore.

出版信息

Geroscience. 2025 Feb 22. doi: 10.1007/s11357-025-01570-4.

Abstract

Many aging cohort studies have collected data on participants' job titles, yet these job titles were seldom analyzed within the cognitive aging context despite their relevance to neurocognition, due to difficulties in analyzing these job titles quantitatively. While it is possible to rate these jobs' occupational complexity (OC) using job classification systems, this can be somewhat labor-intensive and prone to human errors. To this end, we demonstrate a novel and simple method to extract OC ratings from job titles using ChatGPT. Then, we showcased the utility of these ratings in predicting cognitive and structural brain outcomes, especially compared to other socioeconomic status (SES) indicators. Community-dwelling older adults (N = 238, age = 70) completed cognitive assessments and underwent MRI scans. Regression models were fitted to predict 14 different cognitive outcomes, vertex-wise cortical thickness (CT), and subcortical gray matter volumes, using OC scores and/or SES predictors (e.g., education, housing type, and income levels), controlling for demographical covariates. OC scores outperformed SES indicators in predicting clusters of CT increases and most cognitive outcomes, including diagnoses of mild cognitive impairment. Furthermore, OC scores significantly predicted clusters of CT increases and various cognitive outcomes, even after controlling for SES. Meta-analytic decoding suggests these clusters of CT increases occurred in regions typically associated with sensorimotor and memory processing. These results highlight the significant and unique contribution of ChatGPT-derived OC scores in predicting cognitive and brain aging outcomes. These scores are easy to derive and can be helpful in fine-tuning predictions of cognitive and brain aging outcomes.

摘要

许多老龄化队列研究收集了参与者的职位数据,然而,尽管这些职位与神经认知相关,但由于难以对其进行定量分析,在认知老龄化背景下很少对这些职位进行分析。虽然可以使用职业分类系统对这些工作的职业复杂性(OC)进行评分,但这可能会有些耗费人力且容易出现人为错误。为此,我们展示了一种使用ChatGPT从职位中提取OC评分的新颖且简单的方法。然后,我们展示了这些评分在预测认知和脑结构结果方面的效用,特别是与其他社会经济地位(SES)指标相比。社区居住的老年人(N = 238,年龄 = 70岁)完成了认知评估并接受了磁共振成像扫描。使用OC分数和/或SES预测指标(如教育程度、住房类型和收入水平),同时控制人口统计学协变量,拟合回归模型以预测14种不同的认知结果、逐顶点皮质厚度(CT)和皮质下灰质体积。在预测CT增加的簇和大多数认知结果(包括轻度认知障碍的诊断)方面,OC分数优于SES指标。此外,即使在控制了SES之后,OC分数仍能显著预测CT增加的簇和各种认知结果。荟萃分析解码表明,这些CT增加的簇出现在通常与感觉运动和记忆处理相关的区域。这些结果突出了ChatGPT衍生的OC分数在预测认知和脑老化结果方面的显著且独特的贡献。这些分数易于得出,有助于微调对认知和脑老化结果的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验