Farhangmehr Vahid, Imanian Hanifeh, Mohammadian Abdolmajid, Cobo Juan Hiedra, Shirkhani Hamidreza, Payeur Pierre
Department of Mechanical Engineering, University of Bonab, P.O. Box 55517-61167, Bonab, Iran.
Department of Civil and Environmental Engineering, Amirkabir University of Technology, PO box: 1591634311, Tehran, Iran.
Sci Total Environ. 2025 Mar 10;968:178901. doi: 10.1016/j.scitotenv.2025.178901. Epub 2025 Feb 22.
Soil temperature is a critical factor in soil science, hydrology, agriculture, water resources engineering, geotechnical engineering, geo-environmental engineering, meteorology, and climatology. Reliable prediction of subsurface, near-surface, and surface soil temperatures is essential for efficient decision-making. This study employed an optimized two-dimensional convolutional neural network (CNN) coupled with a single-layer long short-term memory (LSTM) model to forecast hourly spatiotemporal soil temperatures at a depth of 0-7 cm. The model was trained on annual hourly time-series spatiotemporal soil temperature data and evaluated across five climatic zones in Canada and the US: humid subtropical, humid continental-hot summer, polar tundra, subarctic-cool summer, and humid continental-mild summer. The results showed that the CNN-LSTM model accurately predicts spatiotemporal soil temperatures across these climates, with training correlations ranging from 99.18 % to 99.69 % and testing correlations from 93.72 % to 99.24 %. The CNN-LSTM model outperformed the random forest (RF) and support vector regression (SVR) models in prediction accuracy. The CNN-LSTM achieved normalized root mean squared error (NRMSE) values ranging from 1.42 % to 3.63 % and coefficient of determination (R) values from 93.73 % to 99.25 %, while the RF model showed NRMSE values from 6.93 % to 9.14 % and R values between 82.84 % and 88.36 %, and the SVR model demonstrated NRMSE values from 7.48 % to 9.69 % and R values between 80.93 % and 86.45 %. The CNN-LSTM's reliability offers valuable insights for large-scale regional applications in agriculture, hydrology, and climate adaptation, supporting decision-making in crop management, irrigation, environmental monitoring, and infrastructure design, resulting in strategies in managing water resources and mitigating climate change impacts.
土壤温度是土壤科学、水文学、农业、水资源工程、岩土工程、地质环境工程、气象学和气候学中的一个关键因素。可靠地预测地下、近地表和地表土壤温度对于高效决策至关重要。本研究采用了一种优化的二维卷积神经网络(CNN)与单层长短期记忆(LSTM)模型相结合的方法,来预测深度为0至7厘米处每小时的时空土壤温度。该模型基于年度每小时时间序列的时空土壤温度数据进行训练,并在加拿大和美国的五个气候区进行评估:湿润亚热带、湿润大陆性炎热夏季、极地苔原、亚北极凉爽夏季和湿润大陆性温和夏季。结果表明,CNN-LSTM模型能够准确预测这些气候条件下的时空土壤温度,训练相关性范围为99.18%至99.69%,测试相关性范围为93.72%至99.24%。在预测准确性方面,CNN-LSTM模型优于随机森林(RF)和支持向量回归(SVR)模型。CNN-LSTM模型的归一化均方根误差(NRMSE)值范围为1.42%至3.63%,决定系数(R)值范围为93.73%至99.25%,而RF模型显示NRMSE值范围为6.93%至9.14%,R值在82.84%至88.36%之间,SVR模型的NRMSE值范围为7.48%至9.69%,R值在80.93%至86.45%之间。CNN-LSTM模型的可靠性为农业、水文学和气候适应方面的大规模区域应用提供了有价值的见解,支持作物管理、灌溉、环境监测和基础设施设计方面的决策,从而制定水资源管理和减轻气候变化影响的策略。