Suppr超能文献

治疗性基因编辑:递送与监管视角

Therapeutic gene editing: delivery and regulatory perspectives.

作者信息

Shim Gayong, Kim Dongyoon, Park Gyu Thae, Jin Hyerim, Suh Soo-Kyung, Oh Yu-Kyoung

机构信息

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.

Advanced Therapy Product Research Division, Ministry of Food and Drug Safety, Cheongju, Chungcheongbuk-do, Republic of Korea.

出版信息

Acta Pharmacol Sin. 2017 Jun;38(6):738-753. doi: 10.1038/aps.2017.2. Epub 2017 Apr 10.

Abstract

Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.

摘要

基因编辑技术是一种新兴的治疗方式,通过使用靶向序列特异性工程核酸酶来操纵真核生物基因组。由于基因编辑技术在促进基因组序列精确校正方面具有突出优势,基于基因编辑的疗法正作为一种治疗多种疾病的下一代治疗方法而被积极开发。然而,与其他基因靶向治疗方法一样,包括锌指核酸酶、转录激活样效应核酸酶和CRISPR/Cas9(成簇规律间隔短回文重复序列相关核酸酶Cas9)在内的基因编辑核酸酶的精确工程和递送策略,是基因编辑疗法发展的主要障碍。目前,正在研究病毒和非病毒载体,以便将这些核酸酶以DNA、mRNA或蛋白质的形式递送至细胞中。临床试验已经在进行,体内研究也在积极探索CRISPR/Cas9技术的适用性。然而,从监管角度来看,校正基因组的概念引发了重大担忧,尤其是在安全性方面。本综述阐述了非临床和临床环境中基于基因编辑的治疗方法的当前研究趋势和递送策略,并探讨了相关的监管问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6283/5520188/1e6e8a930a6e/aps20172f1.jpg

相似文献

1
Therapeutic gene editing: delivery and regulatory perspectives.
Acta Pharmacol Sin. 2017 Jun;38(6):738-753. doi: 10.1038/aps.2017.2. Epub 2017 Apr 10.
2
CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
J Cell Physiol. 2019 Aug;234(8):12267-12277. doi: 10.1002/jcp.27972. Epub 2019 Jan 30.
3
Non-viral delivery of genome-editing nucleases for gene therapy.
Gene Ther. 2017 Mar;24(3):144-150. doi: 10.1038/gt.2016.72. Epub 2016 Oct 31.
5
Therapeutic Genome Editing and In Vivo Delivery.
AAPS J. 2021 Jun 2;23(4):80. doi: 10.1208/s12248-021-00613-w.
6
[CRISPR/Cas9 technology in disease research and therapy: a review].
Sheng Wu Gong Cheng Xue Bao. 2021 Apr 25;37(4):1205-1228. doi: 10.13345/j.cjb.200401.
7
Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9.
Int J Pharm. 2015 Oct 15;494(1):180-94. doi: 10.1016/j.ijpharm.2015.08.029. Epub 2015 Aug 13.
8
Delivery technologies for genome editing.
Nat Rev Drug Discov. 2017 Jun;16(6):387-399. doi: 10.1038/nrd.2016.280. Epub 2017 Mar 24.
9
Engineered CRISPR Systems for Next Generation Gene Therapies.
ACS Synth Biol. 2017 Sep 15;6(9):1614-1626. doi: 10.1021/acssynbio.7b00011. Epub 2017 Jun 7.
10
Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.
J Control Release. 2015 May 10;205:120-7. doi: 10.1016/j.jconrel.2014.12.036. Epub 2014 Dec 30.

引用本文的文献

1
Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases.
Stem Cell Rev Rep. 2025 Feb 27. doi: 10.1007/s12015-025-10857-0.
2
Anti-gene oligonucleotide clamps invade dsDNA and downregulate expression.
Mol Ther Nucleic Acids. 2024 Oct 24;35(4):102348. doi: 10.1016/j.omtn.2024.102348. eCollection 2024 Dec 10.
3
Chemical engineering of CRISPR-Cas systems for therapeutic application.
Nat Rev Drug Discov. 2025 Mar;24(3):209-230. doi: 10.1038/s41573-024-01086-0. Epub 2024 Dec 17.
4
A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing.
J Virol. 2024 Dec 17;98(12):e0083224. doi: 10.1128/jvi.00832-24. Epub 2024 Nov 4.
5
Gene Augmentation Techniques to Stimulate Wound Healing Process: Progress and Prospects.
Curr Gene Ther. 2025;25(4):394-416. doi: 10.2174/0115665232316799241008073042.
8
CAR-T cell manufacturing landscape-Lessons from the past decade and considerations for early clinical development.
Mol Ther Methods Clin Dev. 2024 Apr 16;32(2):101250. doi: 10.1016/j.omtm.2024.101250. eCollection 2024 Jun 13.
9
CRISPR/Cas9-Mediated Customizing Strategies for Adoptive T-Cell Therapy.
Pharmaceutics. 2024 Mar 1;16(3):346. doi: 10.3390/pharmaceutics16030346.
10
Nanoparticle-mediated delivery of non-viral gene editing technology to the brain.
Prog Neurobiol. 2024 Jan;232:102547. doi: 10.1016/j.pneurobio.2023.102547. Epub 2023 Dec 1.

本文引用的文献

1
CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles.
Mol Ther Nucleic Acids. 2016;5(8):e349. doi: 10.1038/mtna.2016.58.
3
Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology.
Front Microbiol. 2016 Jun 28;7:1001. doi: 10.3389/fmicb.2016.01001. eCollection 2016.
4
CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector.
Mol Ther Nucleic Acids. 2016 Jul 19;5(7):e338. doi: 10.1038/mtna.2016.49.
6
CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.
Mol Ther. 2016 Sep;24(9):1561-9. doi: 10.1038/mt.2016.148. Epub 2016 Jul 29.
9
Engineering Delivery Vehicles for Genome Editing.
Annu Rev Chem Biomol Eng. 2016 Jun 7;7:637-62. doi: 10.1146/annurev-chembioeng-080615-034711. Epub 2016 Apr 21.
10
Inhibition of HSV-1 Replication by Gene Editing Strategy.
Sci Rep. 2016 Apr 11;6:23146. doi: 10.1038/srep23146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验