Suppr超能文献

使用深度神经网络进行无创胎儿基因分型。

Noninvasive fetal genotyping using deep neural networks.

作者信息

Schwammenthal Yonathan, Rabinowitz Tom, Basel-Salmon Lina, Tomashov-Matar Reut, Shomron Noam

机构信息

Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.

Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbaf067.

Abstract

Circulating cell-free DNA (cfDNA) is a powerful diagnostics tool that is widely studied in the context of liquid biopsy in oncology and other fields. In obstetrics, maternal plasma cfDNA have already proven its utility, enabling noninvasive prenatal testing (NIPT), which has become a standard for detecting chromosomal aberrations. However, identification of point mutations responsible for monogenic diseases (NIPT-M) remains limited, even when accounting to fragment specific characteristics (i.e. fragmentomics). While genotyping of individual genomes is performed today using deep learning (DL) algorithms, cfDNA-based noninvasive fetal genotyping is performed only using traditional statistical and machine-learning methods. This study introduces the first DL-based framework for cfDNA based genotyping, heralding a significant stride toward genome-wide NIPT-M. Using unique ultra-deep whole genome sequencing (WGS) data, we were motivated to develop an efficient model, especially when compared with current DL methods for WGS. This facilitates the integration of previously overlooked levels of information, encompassing DNA nucleotides, fragments, mutation regions, samples, and familial traits. Employing this novel approach, we surpass the performance of existing methodologies, successfully detecting three deleterious mutations, and allowing for NIPT-M as early as the 7th week of gestation. Our proposed approach brings genome-wide NIPT for all mutation types closer to clinical feasibility, enabling families and healthcare providers to make well-informed decisions and alleviating the anxieties and uncertainties associated with pregnancy.

摘要

循环游离DNA(cfDNA)是一种强大的诊断工具,在肿瘤学和其他领域的液体活检背景下得到了广泛研究。在产科中,母体血浆cfDNA已证明其效用,实现了无创产前检测(NIPT),这已成为检测染色体畸变的标准方法。然而,即使考虑到片段特异性特征(即片段组学),对单基因疾病(NIPT-M)相关点突变的识别仍然有限。虽然如今使用深度学习(DL)算法进行个体基因组的基因分型,但基于cfDNA的无创胎儿基因分型仅使用传统统计和机器学习方法。本研究引入了首个基于DL的cfDNA基因分型框架,朝着全基因组NIPT-M迈出了重要一步。利用独特的超深度全基因组测序(WGS)数据,我们致力于开发一种高效模型,尤其是与当前用于WGS的DL方法相比。这有助于整合以前被忽视的信息层面,包括DNA核苷酸、片段、突变区域、样本和家族特征。采用这种新方法,我们超越了现有方法的性能,成功检测到三个有害突变,并早在妊娠第7周就实现了NIPT-M。我们提出的方法使针对所有突变类型的全基因组NIPT更接近临床可行性,使家庭和医疗保健提供者能够做出明智的决策,并减轻与妊娠相关的焦虑和不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8da2/11848515/70bb5197ac3a/bbaf067f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验