Suppr超能文献

基于干式脑电图和瞳孔光反射的用于助餐机器人的混合脑机接口

Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.

作者信息

Ha Jihyeon, Park Sangin, Han Yaeeun, Kim Laehyun

机构信息

Bionics Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.

Next-Generation Mechanical Design Laboratory, Korea University, Seoul 02841, Republic of Korea.

出版信息

Biomimetics (Basel). 2025 Feb 18;10(2):118. doi: 10.3390/biomimetics10020118.

Abstract

Brain-computer interface (BCI)-based assistive technologies enable intuitive and efficient user interaction, significantly enhancing the independence and quality of life of elderly and disabled individuals. Although existing wet EEG-based systems report high accuracy, they suffer from limited practicality. This study presents a hybrid BCI system combining dry-type EEG-based flash visual-evoked potentials (FVEP) and pupillary light reflex (PLR) designed to control an LED-based meal-assist robot. The hybrid system integrates dry-type EEG and eyewear-type infrared cameras, addressing the preparation challenges of wet electrodes, while maintaining practical usability and high classification performance. Offline experiments demonstrated an average accuracy of 88.59% and an information transfer rate (ITR) of 18.23 bit/min across the four target classifications. Real-time implementation uses PLR triggers to initiate the meal cycle and EMG triggers to detect chewing, indicating the completion of the cycle. These features allow intuitive and efficient operation of the meal-assist robot. This study advances the BCI-based assistive technologies by introducing a hybrid system optimized for real-world applications. The successful integration of the FVEP and PLR in a meal-assisted robot demonstrates the potential for robust and user-friendly solutions that empower the users with autonomy and dignity in their daily activities.

摘要

基于脑机接口(BCI)的辅助技术实现了直观高效的用户交互,显著提高了老年人和残疾人的独立性和生活质量。尽管现有的基于湿式脑电图的系统准确率很高,但其实用性有限。本研究提出了一种混合BCI系统,该系统结合了基于干式脑电图的闪光视觉诱发电位(FVEP)和瞳孔光反射(PLR),用于控制基于LED的用餐辅助机器人。该混合系统集成了干式脑电图和眼镜式红外摄像头,解决了湿式电极的准备难题,同时保持了实际可用性和高分类性能。离线实验表明,在四个目标分类中,平均准确率为88.59%,信息传输率(ITR)为18.23比特/分钟。实时实现使用PLR触发来启动用餐周期,使用肌电图(EMG)触发来检测咀嚼,以表明周期的完成。这些特性使用餐辅助机器人能够实现直观高效的操作。本研究通过引入针对实际应用进行优化的混合系统,推动了基于BCI的辅助技术的发展。FVEP和PLR在进餐辅助机器人中的成功集成,展示了强大且用户友好的解决方案的潜力,这些解决方案使用户在日常活动中拥有自主权和尊严。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0266/11853533/aee3a0e9c92b/biomimetics-10-00118-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验