Zito Antonino, Martinelli Axel, Masiero Mauro, Akhmedov Murodzhon, Kwee Ivo
BigOmics Analytics, Via Serafino Balestra 12, Lugano 6900, Switzerland.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf084.
Batch effects (BEs) are a predominant source of noise in omics data and often mask real biological signals. BEs remain common in existing datasets. Current methods for BE correction mostly rely on specific assumptions or complex models, and may not detect and adjust BEs adequately, impacting downstream analysis and discovery power. To address these challenges we developed NPM, a nearest-neighbor matching-based method that adjusts BEs and may outperform other methods in a wide range of datasets.
We assessed distinct metrics and graphical readouts, and compared our method to commonly used BE correction methods. NPM demonstrates the ability in correcting for BEs, while preserving biological differences. It may outperform other methods based on multiple metrics. Altogether, NPM proves to be a valuable BE correction approach to maximize discovery in biomedical research, with applicability in clinical research where latent BEs are often dominant.
NPM is freely available on GitHub (https://github.com/bigomics/NPM) and on Omics Playground (https://bigomics.ch/omics-playground). Computer codes for analyses are available at (https://github.com/bigomics/NPM). The datasets underlying this article are the following: GSE120099, GSE82177, GSE162760, GSE171343, GSE153380, GSE163214, GSE182440, GSE163857, GSE117970, GSE173078, and GSE10846. All these datasets are publicly available and can be freely accessed on the Gene Expression Omnibus repository.
批次效应(BEs)是组学数据中噪声的主要来源,常常掩盖真实的生物信号。批次效应在现有数据集中仍然很常见。当前用于批次效应校正的方法大多依赖于特定假设或复杂模型,可能无法充分检测和调整批次效应,从而影响下游分析和发现能力。为应对这些挑战,我们开发了NPM,一种基于最近邻匹配的方法,该方法可调整批次效应,并且在广泛的数据集上可能优于其他方法。
我们评估了不同的指标和图形读数,并将我们的方法与常用的批次效应校正方法进行了比较。NPM展示了校正批次效应的能力,同时保留了生物学差异。基于多个指标,它可能优于其他方法。总之,NPM被证明是一种有价值的批次效应校正方法,可在生物医学研究中最大限度地实现发现,适用于潜在批次效应通常占主导的临床研究。