Yu Bowen, Liu Yuhong, Wu Xin, Ren Jing, Zhao Zhibin
Global Health Research Center, Duke Kunshan University, Jiangsu, China.
School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.
PLoS One. 2025 Feb 25;20(2):e0317900. doi: 10.1371/journal.pone.0317900. eCollection 2025.
Cardiovascular disease is one of the most dangerous conditions, posing a significant threat to daily health. Electrocardiography (ECG) is crucial for heart health monitoring. It plays a pivotal role in early heart disease detection, heart function assessment, and guiding treatments. Thus, refining ECG diagnostic methods is vital for timely and accurate heart disease diagnosis. Recently, deep learning has significantly advanced in ECG signal classification and recognition. However, these methods struggle with new or Out-of-Distribution (OOD) heart diseases. The deep learning model performs well on existing heart diseases but falters on unknown types, which leads to less reliable diagnoses. To address this challenge, we propose a novel trustworthy diagnosis method for ECG signals based on OOD detection. The proposed model integrates Convolutional Neural Networks (CNN) and Attention mechanisms to enhance feature extraction. Meanwhile, Energy and ReAct techniques are used to recognize OOD heart diseases and its generalization capacity for trustworthy diagnosis. Empirical validation using both the MIT-BIH Arrhythmia Database and the INCART 12-lead Arrhythmia Database demonstrated our method's high sensitivity and specificity in diagnosing both known and out-of-distribution (OOD) heart diseases, thus verifying the model's diagnostic trustworthiness. The results not only validate the effectiveness of our approach but also highlight its potential application value in cardiac health diagnostics.
心血管疾病是最危险的病症之一,对日常健康构成重大威胁。心电图(ECG)对于心脏健康监测至关重要。它在早期心脏病检测、心脏功能评估以及指导治疗方面发挥着关键作用。因此,完善心电图诊断方法对于及时、准确地诊断心脏病至关重要。最近,深度学习在心电图信号分类和识别方面取得了显著进展。然而,这些方法在面对新的或分布外(OOD)的心脏病时存在困难。深度学习模型在现有心脏病方面表现良好,但在面对未知类型时会出现问题,这导致诊断的可靠性降低。为应对这一挑战,我们提出了一种基于分布外检测的新型可靠心电图信号诊断方法。所提出的模型集成了卷积神经网络(CNN)和注意力机制以增强特征提取。同时,使用能量和ReAct技术来识别分布外心脏病及其用于可靠诊断的泛化能力。使用麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库(MIT - BIH Arrhythmia Database)和INCART 12导联心律失常数据库进行的实证验证表明,我们的方法在诊断已知和分布外(OOD)心脏病方面具有高灵敏度和特异性,从而验证了模型的诊断可靠性。结果不仅验证了我们方法的有效性,还突出了其在心脏健康诊断中的潜在应用价值。