Suppr超能文献

光诱导的神经形态光子半导体微柱感觉神经元中的负微分电阻和神经振荡。

Light-induced negative differential resistance and neural oscillations in neuromorphic photonic semiconductor micropillar sensory neurons.

作者信息

Jacob Bejoys, Silva Juan, Figueiredo José M L, Nieder Jana B, Romeira Bruno

机构信息

INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal.

LIP - Laboratório de Instrumentação e Física Experimental de Partículas, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.

出版信息

Sci Rep. 2025 Feb 25;15(1):6805. doi: 10.1038/s41598-025-90265-z.

Abstract

Neuromorphic systems, inspired by nature, are sought to efficiently process analogue inputs in real and complex environments. This could lead to ultralow-power in-sensor intelligent edge computers. Here, we present an artificial sensory oscillator neuron consisting of a III-V semiconductor micropillar quantum resonant tunnelling diode (RTD) with GaAs photosensitive absorption layers. The oscillatory optical neuron encodes incoming analogue optical data into spatiotemporal oscillatory signals. We demonstrate that near-infrared light within a certain intensity range activates a region of negative differential resistance, and subsequently, large-amplitude voltage oscillations. As a result, optic analogue information is encoded into electrical oscillations resulting in amplification of sensory light inputs. Under pulse-modulated light, excitation and inhibition of burst firing patterns can be controlled within a single oscillatory neuron, simulating neural activity in networks in the form of breather-type oscillatory phenomena. Such spatiotemporal oscillatory patterns (burst firing) form the basis for the combined sensing, pre-processing, and encoding abilities of the vision-nervous system found in biological organisms. This work paves the way for future artificial visual systems using III-V semiconductor nano-optoelectronic circuits in applications for light-driven neurorobotics, bioinspired optoelectronics, and in-sensor neuromorphic computing systems for real-time processing of sensory data.

摘要

受自然启发的神经形态系统旨在在真实且复杂的环境中高效处理模拟输入。这可能会带来超低功耗的传感器内智能边缘计算机。在此,我们展示了一种人工感觉振荡器神经元,它由一个带有砷化镓光敏吸收层的III-V族半导体微柱量子共振隧穿二极管(RTD)组成。这种振荡光学神经元将传入的模拟光学数据编码为时空振荡信号。我们证明,在一定强度范围内的近红外光会激活负微分电阻区域,随后产生大幅度的电压振荡。结果,光学模拟信息被编码为电振荡,从而实现感觉光输入的放大。在脉冲调制光下,单个振荡神经元内的爆发式放电模式的激发和抑制可以得到控制,以呼吸型振荡现象的形式模拟网络中的神经活动。这种时空振荡模式(爆发式放电)构成了生物有机体中视觉神经系统的联合传感、预处理和编码能力的基础。这项工作为未来在光驱动神经机器人技术、仿生光电子学以及用于实时处理传感数据的传感器内神经形态计算系统等应用中使用III-V族半导体纳米光电子电路的人工视觉系统铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2e2/11862094/93ecd6ee236b/41598_2025_90265_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验