Suppr超能文献

使用Crescendo对单细胞空间转录组学计数数据进行批量校正可改善空间基因模式的可视化和检测。

Batch correcting single-cell spatial transcriptomics count data with Crescendo improves visualization and detection of spatial gene patterns.

作者信息

Millard Nghia, Chen Jonathan H, Palshikar Mukta G, Pelka Karin, Spurrell Maxwell, Price Colles, He Jiang, Hacohen Nir, Raychaudhuri Soumya, Korsunsky Ilya

机构信息

Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.

Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Genome Biol. 2025 Feb 25;26(1):36. doi: 10.1186/s13059-025-03479-9.

Abstract

Spatial transcriptomics facilitates gene expression analysis of cells in their spatial anatomical context. Batch effects hinder visualization of gene spatial patterns across samples. We present the Crescendo algorithm to correct for batch effects at the gene expression level and enable accurate visualization of gene expression patterns across multiple samples. We show Crescendo's utility and scalability across three datasets ranging from 170,000 to 7 million single cells across spatial and single-cell RNA sequencing technologies. By correcting for batch effects, Crescendo enhances spatial transcriptomics analyses to detect gene colocalization and ligand-receptor interactions and enables cross-technology information transfer.

摘要

空间转录组学有助于在细胞的空间解剖背景下进行基因表达分析。批次效应阻碍了跨样本基因空间模式的可视化。我们提出了Crescendo算法,以在基因表达水平上校正批次效应,并能够准确可视化多个样本中的基因表达模式。我们展示了Crescendo在三个数据集上的实用性和可扩展性,这些数据集涵盖了从170,000到700万个单细胞,涉及空间和单细胞RNA测序技术。通过校正批次效应,Crescendo增强了空间转录组学分析,以检测基因共定位和配体-受体相互作用,并实现跨技术信息传递。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9526/11863647/b39f9ab208a3/13059_2025_3479_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验