Tseng Mu-Ruei, Vyas Kathan, Das Anurag, Quamer Waris, Dave Darpit, Erranguntla Madhav, Villegas Carolina, DeSalvo Daniel, McKay Siripoom, Cote Gerard, Gutierrez-Osuna Ricardo
Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA.
Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA.
J Diabetes Sci Technol. 2025 Feb 25:19322968251319347. doi: 10.1177/19322968251319347.
Current methods to detect hypoglycemia in type 1 diabetes (T1D) require invasive sensors (ie, continuous glucose monitors, CGMs) that generally have low accuracy in the hypoglycemic range. A forward-looking alternative is to monitor physiological changes induced by hypoglycemia that can be measured non-invasively using, eg, electrocardiography (ECG). However, current methods require extraction of fiduciary points in the ECG signal (eg, to estimate QT interval), which is challenging in ambulatory settings.
To address this issue, we present a machine-learning model that uses (1) convolutional neural networks (CNNs) to extract morphological information from raw ECG signals without the need to identify fiduciary points and (2) ensemble learning to aggregate predictions from multiple ECG beats. We evaluate the model on an experimental data set that contains ECG and CGM recordings over a period of 14 days from ten participants with T1D. We consider two testing scenarios, one that divides ECG data according to CGM readings (CGM-split) and another that divides ECG data on a day-to-day basis (day-split).
We find that models trained using CGM-splits tend to produce overly optimistic estimates of hypoglycemia prediction, whereas day-splits provide more realistic estimates, which are consistent with the intrinsic accuracy of CGM devices. More importantly, we find that aggregating predictions from multiple ECG beats using ensemble learning significantly improves predictions at the beat level, though these improvements have large inter-individual differences.
Deep learning models and ensemble learning can extract and aggregate morphological information in ECG signals that is predictive of hypoglycemia. Using two validation procedures, we estimate an upper bound on the accuracy of ECG hypoglycemia prediction of 81% equal error rate and a lower bound of 60%. Further improvements may be achieved using big-data approaches that require longitudinal data from a large cohort of participants.
目前检测1型糖尿病(T1D)低血糖的方法需要使用侵入性传感器(即连续血糖监测仪,CGM),而这些传感器在低血糖范围内的准确性通常较低。一种前瞻性的替代方法是监测由低血糖引起的生理变化,这些变化可以使用例如心电图(ECG)进行非侵入性测量。然而,目前的方法需要提取ECG信号中的基准点(例如,估计QT间期),这在动态环境中具有挑战性。
为了解决这个问题,我们提出了一种机器学习模型,该模型使用(1)卷积神经网络(CNN)从原始ECG信号中提取形态学信息,而无需识别基准点,以及(2)集成学习来汇总来自多个ECG心跳的预测。我们在一个实验数据集上评估该模型,该数据集包含来自10名T1D参与者的14天内的ECG和CGM记录。我们考虑两种测试场景,一种是根据CGM读数划分ECG数据(CGM分割),另一种是按天划分ECG数据(日分割)。
我们发现,使用CGM分割训练的模型往往会对低血糖预测产生过于乐观的估计,而日分割则提供了更现实的估计,这与CGM设备的固有准确性一致。更重要的是,我们发现使用集成学习汇总来自多个ECG心跳的预测在心跳水平上显著提高了预测,尽管这些改进存在较大的个体差异。
深度学习模型和集成学习可以提取和汇总ECG信号中预测低血糖的形态学信息。使用两种验证程序,我们估计ECG低血糖预测准确性的上限为81%等错误率,下限为60%。使用需要来自大量参与者队列的纵向数据的大数据方法可能会实现进一步的改进。