Ruzi Rukiye, Pan Yue, Ng Menwa Lawrence, Su Rongfeng, Wang Lan, Dang Jianwu, Liu Liwei, Yan Nan
Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Advanced Computing and Storage Laboratory, Central Research Institute, 2012 Laboratories, Huawei Technologies Co., Ltd., Nanjing 210012, China.
Bioengineering (Basel). 2025 Jan 24;12(2):108. doi: 10.3390/bioengineering12020108.
Traditional screening methods for Mild Cognitive Impairment (MCI) face limitations in accessibility and scalability. To address this, we developed and validated a speech-based automatic screening app implementing three speech-language tasks with user-centered design and server-client architecture. The app integrates automated speech processing and SVM classifiers for MCI detection. Functionality validation included comparison with manual assessment and testing in real-world settings ( = 12), with user engagement evaluated separately ( = 22). The app showed comparable performance with manual assessment (F1 = 0.93 vs. 0.95) and maintained reliability in real-world settings (F1 = 0.86). Task engagement significantly influenced speech patterns: users rating tasks as "most interesting" produced more speech content ( < 0.05), though behavioral observations showed consistent cognitive processing across perception groups. User engagement analysis revealed high technology acceptance (86%) across educational backgrounds, with daily cognitive exercise habits significantly predicting task benefit perception (H = 9.385, < 0.01). Notably, perceived task difficulty showed no significant correlation with cognitive performance ( = 0.119), suggesting the system's accessibility to users of varying abilities. While preliminary, the mobile app demonstrated both robust assessment capabilities and sustained user engagement, suggesting the potential viability of widespread cognitive screening in the geriatric population.
轻度认知障碍(MCI)的传统筛查方法在可及性和可扩展性方面存在局限性。为了解决这一问题,我们开发并验证了一款基于语音的自动筛查应用程序,该程序通过以用户为中心的设计和服务器-客户端架构实现了三项言语任务。该应用程序集成了自动语音处理和支持向量机分类器用于MCI检测。功能验证包括与人工评估进行比较以及在现实环境中进行测试(n = 12),并分别评估用户参与度(n = 22)。该应用程序在人工评估中表现出相当的性能(F1 = 0.93对0.95),并在现实环境中保持了可靠性(F1 = 0.86)。任务参与度显著影响语音模式:将任务评为“最有趣”的用户产生了更多语音内容(p < 0.05),尽管行为观察表明不同认知水平组的认知处理过程一致。用户参与度分析显示,不同教育背景的用户对该技术的接受度较高(86%),日常认知锻炼习惯显著预测了对任务益处的感知(H = 9.385,p < 0.01)。值得注意的是,感知到的任务难度与认知表现无显著相关性(r = 0.119),这表明该系统对不同能力的用户具有可及性。虽然该移动应用程序尚处于初步阶段,但已展示出强大的评估能力和持续的用户参与度,这表明在老年人群中广泛开展认知筛查具有潜在的可行性。