Suppr超能文献

将人工智能伦理原则应用于医学实践的概念框架。

A Conceptual Framework for Applying Ethical Principles of AI to Medical Practice.

作者信息

Jha Debesh, Durak Gorkem, Sharma Vanshali, Keles Elif, Cicek Vedat, Zhang Zheyuan, Srivastava Abhishek, Rauniyar Ashish, Hagos Desta Haileselassie, Tomar Nikhil Kumar, Miller Frank H, Topcu Ahmet, Yazidi Anis, Håkegård Jan Erik, Bagci Ulas

机构信息

Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, IL 60611, USA.

Sustainable Communication Technologies, SINTEF Digital, 7034 Trondheim, Norway.

出版信息

Bioengineering (Basel). 2025 Feb 13;12(2):180. doi: 10.3390/bioengineering12020180.

Abstract

Artificial Intelligence (AI) is reshaping healthcare through advancements in clinical decision support and diagnostic capabilities. While human expertise remains foundational to medical practice, AI-powered tools are increasingly matching or exceeding specialist-level performance across multiple domains, paving the way for a new era of democratized healthcare access. These systems promise to reduce disparities in care delivery across demographic, racial, and socioeconomic boundaries by providing high-quality diagnostic support at scale. As a result, advanced healthcare services can be affordable to all populations, irrespective of demographics, race, or socioeconomic background. The democratization of such AI tools can reduce the cost of care, optimize resource allocation, and improve the quality of care. In contrast to humans, AI can potentially uncover complex relationships in the data from a large set of inputs and generate new evidence-based knowledge in medicine. However, integrating AI into healthcare raises several ethical and philosophical concerns, such as bias, transparency, autonomy, responsibility, and accountability. In this study, we examine recent advances in AI-enabled medical image analysis, current regulatory frameworks, and emerging best practices for clinical integration. We analyze both technical and ethical challenges inherent in deploying AI systems across healthcare institutions, with particular attention to data privacy, algorithmic fairness, and system transparency. Furthermore, we propose practical solutions to address key challenges, including data scarcity, racial bias in training datasets, limited model interpretability, and systematic algorithmic biases. Finally, we outline a conceptual algorithm for responsible AI implementations and identify promising future research and development directions.

摘要

人工智能(AI)正在通过临床决策支持和诊断能力的进步重塑医疗保健行业。虽然人类专业知识仍然是医疗实践的基础,但人工智能驱动的工具在多个领域的表现越来越接近或超过专家水平,为医疗保健普及的新时代铺平了道路。这些系统有望通过大规模提供高质量的诊断支持,减少不同人口、种族和社会经济群体在医疗服务提供方面的差距。因此,先进的医疗服务对所有人群来说都将是负担得起的,无论其人口特征、种族或社会经济背景如何。此类人工智能工具的普及可以降低医疗成本、优化资源分配并提高医疗质量。与人类不同,人工智能有可能从大量输入数据中发现复杂的关系,并在医学领域生成新的循证知识。然而,将人工智能整合到医疗保健中引发了一些伦理和哲学问题,如偏见、透明度、自主性、责任和问责制。在本研究中,我们审视了人工智能在医学图像分析方面的最新进展、当前的监管框架以及临床整合的新兴最佳实践。我们分析了在医疗机构中部署人工智能系统所固有的技术和伦理挑战,特别关注数据隐私、算法公平性和系统透明度。此外,我们提出了应对关键挑战的实际解决方案,包括数据稀缺、训练数据集中的种族偏见、有限的模型可解释性和系统性算法偏见。最后,我们概述了一个负责任的人工智能实施概念算法,并确定了未来有前景的研发方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b6/11851997/0a14685e71ae/bioengineering-12-00180-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验