Suppr超能文献

俄罗斯野猪非洲猪瘟的风险因素:回归在分类算法中的应用

Risk Factors for African Swine Fever in Wild Boar in Russia: Application of Regression for Classification Algorithms.

作者信息

Zakharova Olga I, Liskova Elena A

机构信息

Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, 603950 Nizhny Novgorod, Russia.

出版信息

Animals (Basel). 2025 Feb 11;15(4):510. doi: 10.3390/ani15040510.

Abstract

The population density of susceptible animals, including domestic pigs and wild boar, is a major risk factor for the emergence of African Swine Fever outbreaks. The ASF foci in wild boar in Russia is sustained by the presence of the virus in the environment, which is primarily determined by the number of infected carcasses found. This study investigates the risk factors related to the occurrence of ASF virus among wild boar, identified through passive monitoring and depopulation control measures, by employing generalized logistic regression models and random forest analysis. The random forest regression outperformed logistic regression coefficient of determination (R = 0.98 and R = 0.88) according to the statistical modeling of ASF using different regression types. When comparing regression models, the results showed that wild boar population density, the number of hunting farms, the presence of infected carcasses, and ASF outbreaks among domestic pigs were the main predictors of epidemic in wild boar. The application of a multiple logistic regression model confirmed the significance of the identified risk factors, determining of the probability of ASF outbreaks among wild boar. Given the prolonged affected area across most regions of Russia, the random forest model proved to be the most effective and interpretable based on quality indicator assessments. By highlighting the important role of geographical conditions, identifying these risk factors enhances our understanding of ASF dynamics in specific regions and offers valuable information for decision-makers in developing targeted control strategies against this disease.

摘要

包括家猪和野猪在内的易感动物的种群密度是非洲猪瘟疫情爆发的主要风险因素。俄罗斯野猪身上的非洲猪瘟疫源地因环境中病毒的存在而持续存在,这主要由发现的感染尸体数量决定。本研究通过采用广义逻辑回归模型和随机森林分析,调查了通过被动监测和扑杀控制措施确定的与野猪感染非洲猪瘟病毒相关的风险因素。根据使用不同回归类型对非洲猪瘟进行的统计建模,随机森林回归的决定系数优于逻辑回归(R = 0.98和R = 0.88)。比较回归模型时,结果表明野猪种群密度、狩猎场数量、感染尸体的存在以及家猪中的非洲猪瘟疫情是野猪疫情的主要预测因素。多元逻辑回归模型的应用证实了所确定风险因素的重要性,确定了野猪中非洲猪瘟疫情爆发的概率。鉴于俄罗斯大部分地区受影响区域持续存在,基于质量指标评估,随机森林模型被证明是最有效且可解释的。通过突出地理条件的重要作用,识别这些风险因素有助于我们了解特定地区的非洲猪瘟动态,并为决策者制定针对该疾病的有针对性控制策略提供有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f69/11851450/68d4f60fd691/animals-15-00510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验