Attallah Ahmed G, Bon Volodymyr, Hirschmann Eric, Butterling Maik, Wagner Andreas, Zaleski Radosław, Kaskel Stefan
Institute of Radiation Physics, Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Physics Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
Small. 2025 Apr;21(14):e2500544. doi: 10.1002/smll.202500544. Epub 2025 Feb 25.
Carbon dioxide (CO) is a major greenhouse gas contributing to global warming. Adsorption in porous sorbents offers a promising method for CO capture and storage. The zinc-triazole-oxalate-based Calgary framework 20 (CALF-20) demonstrates high CO capacity, low HO affinity, and low adsorption heat, enabling energy-efficient and stable performance over multiple cycles. This study examines CO adsorption mechanism in CALF-20 using positron annihilation lifetime spectroscopy (PALS), in situ powder X-ray diffraction (PXRD), and gas adsorption experiments under varying temperatures and humidity levels. Variable-temperature PALS experiments demonstrate that CO₂ molecules are spatially localized within the CALF-20 cages, leaving temperature- and pressure-dependent gaps. CO begins at cage centers, forming 1D chains, and ultimately adheres to pore walls. Interestingly, positronium intensity correlates with the Langmuir-Freundlich isotherm, reflecting gas uptake behavior. Moreover, under pure relative humidity (RH), water molecules form isolated clusters or small oligomers at low RH, transitioning to hydrogen-bonded networks above 35 %RH, significantly altering free volumes. In humid CO₂ conditions, competitive interactions arise: CO₂ initially disrupts water propagation, but higher RH leads to extensive water networks filling the framework. The synergy between in situ-PALS, in situ-PXRD, and gas adsorption techniques provides comprehensive insights into CALF-20's potential for efficient CO capture under varying conditions.
二氧化碳(CO₂)是导致全球变暖的主要温室气体。在多孔吸附剂中进行吸附为二氧化碳的捕获和储存提供了一种很有前景的方法。基于三唑草酸锌的卡尔加里骨架20(CALF-20)表现出高二氧化碳吸附量、低水亲和力和低吸附热,能够在多个循环中实现节能且稳定的性能。本研究使用正电子湮没寿命谱(PALS)、原位粉末X射线衍射(PXRD)以及在不同温度和湿度水平下的气体吸附实验,研究了CALF-20中的二氧化碳吸附机制。变温PALS实验表明,二氧化碳分子在空间上定位于CALF-20的笼内,留下与温度和压力相关的间隙。二氧化碳从笼中心开始,形成一维链,最终附着在孔壁上。有趣的是,正电子强度与朗缪尔-弗伦德利希等温线相关,反映了气体吸附行为。此外,在纯相对湿度(RH)条件下,水分子在低RH时形成孤立的簇或小寡聚物,在RH高于35%时转变为氢键网络,显著改变了自由体积。在潮湿的二氧化碳条件下,会出现竞争相互作用:二氧化碳最初会干扰水的扩散,但较高的RH会导致大量水网络填充骨架。原位PALS、原位PXRD和气体吸附技术之间的协同作用为CALF-20在不同条件下高效捕获二氧化碳的潜力提供了全面的见解。